結果

問題 No.1494 LCS on Tree
ユーザー hotman78
提出日時 2021-04-30 22:23:14
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 24,155 bytes
コンパイル時間 13,501 ms
コンパイル使用メモリ 297,512 KB
最終ジャッジ日時 2025-01-21 03:26:13
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14 TLE * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "cpplib/util/template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include<bits/stdc++.h>
using namespace std;
struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
//#define EPS (1e-10)
#define endl ('\n')
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>using V=vector<T>;
template<typename T>using VV=V<V<T>>;
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?" ":"")<<i;f=1;}cerr<<endl;}
template<typename T>inline void debug2(T t){for(auto i:t)debug(i);}
#define loop(n) for(long long _=0;_<(long long)(n);++_)
#define _overload4(_1,_2,_3,_4,name,...) name
#define __rep(i,a) repi(i,0,a,1)
#define _rep(i,a,b) repi(i,a,b,1)
#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)
#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)
#define _overload3_rev(_1,_2,_3,name,...) name
#define _rep_rev(i,a) repi_rev(i,0,a)
#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)
#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)
// #define rep(i,...) for(auto i:range(__VA_ARGS__))
// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))
// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
// #define irep(i) for(lint i=0;;++i)
// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}
// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a
    );return v;}
// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c
    );for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}
// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}
#define all(n) begin(n),end(n)
template<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}
template<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}
const vector<lint> dx={1,0,-1,0,1,1,-1,-1};
const vector<lint> dy={0,1,0,-1,1,-1,1,-1};
#define SUM(v) accumulate(all(v),0LL)
template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return
    vector(arg,make_vector<T>(x,args...));}
#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))
#define bit(n,a) ((n>>a)&1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back
    ();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret
    .push_back(e);ret.back().push_back(i);}return ret;}
using graph=vector<vector<int>>;
template<typename T>using graph_w=vector<vector<pair<int,T>>>;
template<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<"("<<v.first<<","<<v.second<<")";return out;}
constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}
#line 2 "cpplib/math/ACL_modint1000000007.hpp"
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint=atcoder::modint1000000007;
#line 4 "cpplib/math/ACL_modint_base.hpp"
std::ostream& operator<<(std::ostream& lhs, const mint& rhs) noexcept {
lhs << rhs.val();
return lhs;
}
std::istream& operator>>(std::istream& lhs,mint& rhs) noexcept {
long long x;
lhs >> x;
rhs=x;
return lhs;
}
static int MOD_NOW=-1;
static int sz=0;
static std::vector<mint>fact_table,fact_inv_table;
void update(int x){
if(MOD_NOW!=mint::mod()||sz==0){
fact_table.assign(1,1);
fact_inv_table.assign(1,1);
sz=1;
}
while(sz<=x){
fact_table.resize(sz*2);
fact_inv_table.resize(sz*2);
for(int i=sz;i<sz*2;++i){
fact_table[i]=fact_table[i-1]*i;
}
fact_inv_table[sz*2-1]=fact_table[sz*2-1].inv();
for(int i=sz*2-2;i>=sz;--i){
fact_inv_table[i]=fact_inv_table[i+1]*(i+1);
}
sz*=2;
}
}
inline mint fact(int x){
assert(x>=0);
update(x);
return fact_table[x];
}
inline mint fact_inv(int x){
assert(x>=0);
update(x);
return fact_inv_table[x];
}
inline mint comb(int x,int y){
if(x<0||x<y||y<0)return 0;
return fact(x)*fact_inv(y)*fact_inv(x-y);
}
inline mint perm(int x,int y){
return fact(x)*fact_inv(y);
}
inline mint multi_comb(int x,int y){
return comb(x+y-1,y);
}
#line 3 "cpplib/alga/maybe.hpp"
/**
* @brief Maybe
* @see https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8A%E3%83%89_(%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0
     )#Maybe%E3%83%A2%E3%83%8A%E3%83%89
*/
template<typename T>
struct maybe{
bool _is_none;
T val;
maybe():_is_none(true){}
maybe(T val):_is_none(false),val(val){}
T unwrap()const{
assert(!_is_none);
return val;
}
T unwrap_or(T e)const{
return _is_none?e:val;
}
bool is_none()const{return _is_none;}
bool is_some()const{return !_is_none;}
};
template<typename T,typename F>
auto expand(F op){
return [&op](const maybe<T>& s,const maybe<T>& t){
if(s.is_none())return t;
if(t.is_none())return s;
return maybe<T>(op(s.unwrap(),t.unwrap()));
};
}
#line 4 "cpplib/segment_tree/segment_tree.hpp"
/**
* @brief
* @see https://en.wikipedia.org/wiki/Segment_tree
*/
template<typename T,typename F>
class segment_tree{
using i64=long long;
struct node;
using np=node*;
struct node{
maybe<T>val=maybe<T>();
np ch[2]={nullptr,nullptr};
node(){}
};
np root=new node();
i64 n=1;
i64 sz;
F op;
public:
segment_tree(){}
segment_tree(i64 sz,F op=F()):sz(sz),op(op){
while(n<=sz)n<<=1;
}
maybe<T> get(i64 a,i64 b){
return get(a,b,0,n,root);
}
void apply(i64 x,T val){
apply(x,val,0,n,root);
}
void apply_left(i64 x,T val){
apply_left(x,val,0,n,root);
}
void change(i64 x,T val){
change(x,val,0,n,root);
}
maybe<T> get(i64 a,i64 b,i64 l,i64 r,np t){
if(!t)return maybe<T>();
auto f=expand<T,F>(op);
if(r<=a||b<=l)return maybe<T>();
if(a<=l&&r<=b)return t->val;
i64 m=(l+r)/2;
return f(get(a,b,l,m,t->ch[0]),get(a,b,m,r,t->ch[1]));
}
void apply(i64 x,T val,i64 l,i64 r,np t){
auto f=expand<T,F>(op);
if(!t->ch[0])t->ch[0]=new node();
if(!t->ch[1])t->ch[1]=new node();
if(l<=x&&x<r){
t->val=f(t->val,val);
i64 m=(l+r)/2;
if(r-l>1){
apply(x,val,l,m,t->ch[0]);
apply(x,val,m,r,t->ch[1]);
}
}
}
void apply_left(i64 x,T val,i64 l,i64 r,np t){
if(!t->ch[0])t->ch[0]=new node();
if(!t->ch[1])t->ch[1]=new node();
auto f=expand<T,F>(op);
if(l<=x&&x<r){
t->val=f(val,t->val);
i64 m=(l+r)/2;
if(r-l>1){
apply_left(x,val,l,m,t->ch[0]);
apply_left(x,val,m,r,t->ch[1]);
}
}
}
maybe<T> change(i64 x,T val,i64 l,i64 r,np t){
if(!t->ch[0])t->ch[0]=new node();
if(!t->ch[1])t->ch[1]=new node();
auto f=expand<T,F>(op);
if(l<=x&&x<r){
if(r-l>1){
i64 m=(l+r)/2;
return t->val=f(change(x,val,l,m,t->ch[0]),change(x,val,m,r,t->ch[1]));
}else{
return t->val=f(t->val,val);
}
}
}
};
#line 4 "code.cpp"
int main(){
lint n;
cin>>n;
string s;
cin>>s;
vector<vector<pair<lint,char>>>v(n);
rep(i,n-1){
lint s,t;
cin>>s>>t;
char c;
cin>>c;
s--;t--;
v[s].emplace_back(t,c);
v[t].emplace_back(s,c);
}
lint m=s.size();
auto dfs=[&](auto dfs,lint now,lint p)->vec{
vec res(m+1);
for(auto [to,c]:v[now]){
if(p==to)continue;
auto dp=dfs(dfs,to,now);
rep(i,m+1){
chmax(res[i],dp[i]);
if(i)chmax(res[i],res[i-1]);
if(i&&s[i-1]==c)chmax(res[i],dp[i-1]+1);
}
}
return res;
};
lint ans=0;
rep(i,n){
chmax(ans,dfs(dfs,i,-1).back());
}
cout<<ans<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0