結果
問題 | No.1491 銀将 |
ユーザー | hitonanode |
提出日時 | 2021-04-30 22:43:32 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 6 ms / 1,000 ms |
コード長 | 18,203 bytes |
コンパイル時間 | 3,509 ms |
コンパイル使用メモリ | 253,580 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-19 02:26:22 |
合計ジャッジ時間 | 4,151 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
5,248 KB |
testcase_01 | AC | 6 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 6 ms
5,376 KB |
testcase_04 | AC | 6 ms
5,376 KB |
testcase_05 | AC | 5 ms
5,376 KB |
testcase_06 | AC | 6 ms
5,376 KB |
testcase_07 | AC | 6 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 6 ms
5,376 KB |
testcase_10 | AC | 5 ms
5,376 KB |
testcase_11 | AC | 6 ms
5,376 KB |
testcase_12 | AC | 6 ms
5,376 KB |
testcase_13 | AC | 6 ms
5,376 KB |
testcase_14 | AC | 5 ms
5,376 KB |
testcase_15 | AC | 5 ms
5,376 KB |
testcase_16 | AC | 5 ms
5,376 KB |
testcase_17 | AC | 5 ms
5,376 KB |
testcase_18 | AC | 6 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) (x) #endif template <int mod> struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; MDCONST ModInt() : val(0) {} MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; } MDCONST ModInt(lint v) { _setval(v % mod + mod); } MDCONST explicit operator bool() const { return val != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } MDCONST bool operator==(const ModInt &x) const { return val == x.val; } MDCONST bool operator!=(const ModInt &x) const { return val != x.val; } MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; } MDCONST ModInt pow(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod, n /= 2; } return ans; } static std::vector<long long> facs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N <= l0) return; facs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod; long long facinv = ModInt(facs.back()).pow(mod - 2).val; for (int i = N - 1; i >= l0; i--) { invs[i] = facinv * facs[i - 1] % mod; facinv = facinv * i % mod; } } MDCONST lint inv() const { if (this->val < std::min(mod >> 1, 1 << 21)) { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val]; } else { return this->pow(mod - 2).val; } } MDCONST ModInt fac() const { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val]; } MDCONST ModInt doublefac() const { lint k = (this->val + 1) / 2; return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac()); } ModInt sqrt() const { if (val == 0) return 0; if (mod == 2) return val; if (pow((mod - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((mod - 1) / 2) == 1) b += 1; int e = 0, m = mod - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, mod - x.val)); } }; template <int mod> std::vector<long long> ModInt<mod>::facs = {1}; template <int mod> std::vector<long long> ModInt<mod>::invs = {0}; // Berlekamp–Massey algorithm // https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm // Complexity: O(N^2) // input: S = sequence from field K // return: L = degree of minimal polynomial, // C_reversed = monic min. polynomial (size = L + 1, reversed order, C_reversed[0] = 1)) // Formula: convolve(S, C_reversed)[i] = 0 for i >= L // Example: // - [1, 2, 4, 8, 16] -> (1, [1, -2]) // - [1, 1, 2, 3, 5, 8] -> (2, [1, -1, -1]) // - [0, 0, 0, 0, 1] -> (5, [1, 0, 0, 0, 0, 998244352]) (mod 998244353) // - [] -> (0, [1]) // - [0, 0, 0] -> (0, [1]) // - [-2] -> (1, [1, 2]) template <typename Tfield> std::pair<int, std::vector<Tfield>> linear_recurrence(const std::vector<Tfield> &S) { int N = S.size(); using poly = std::vector<Tfield>; poly C_reversed{1}, B{1}; int L = 0, m = 1; Tfield b = 1; // adjust: C(x) <- C(x) - (d / b) x^m B(x) auto adjust = [](poly C, const poly &B, Tfield d, Tfield b, int m) -> poly { C.resize(std::max(C.size(), B.size() + m)); Tfield a = d / b; for (unsigned i = 0; i < B.size(); i++) C[i + m] -= a * B[i]; return C; }; for (int n = 0; n < N; n++) { Tfield d = S[n]; for (int i = 1; i <= L; i++) d += C_reversed[i] * S[n - i]; if (d == 0) m++; else if (2 * L <= n) { poly T = C_reversed; C_reversed = adjust(C_reversed, B, d, b, m); L = n + 1 - L; B = T; b = d; m = 1; } else C_reversed = adjust(C_reversed, B, d, b, m++); } return std::make_pair(L, C_reversed); } // Calculate ^N \bmod f(x)$ // Known as `Kitamasa method` // Input: f_reversed: monic, reversed (f_reversed[0] = 1) // Complexity: (K^2 \log N)$ ($: deg. of $) // Example: (4, [1, -1, -1]) -> [2, 3] // ( x^4 = (x^2 + x + 2)(x^2 - x - 1) + 3x + 2 ) // Reference: http://misawa.github.io/others/fast_kitamasa_method.html // http://sugarknri.hatenablog.com/entry/2017/11/18/233936 template <typename Tfield> std::vector<Tfield> monomial_mod_polynomial(long long N, const std::vector<Tfield> &f_reversed) { assert(!f_reversed.empty() and f_reversed[0] == 1); int K = f_reversed.size() - 1; if (!K) return {}; int D = 64 - __builtin_clzll(N); std::vector<Tfield> ret(K, 0); ret[0] = 1; auto self_conv = [](std::vector<Tfield> x) -> std::vector<Tfield> { int d = x.size(); std::vector<Tfield> ret(d * 2 - 1); for (int i = 0; i < d; i++) { ret[i * 2] += x[i] * x[i]; for (int j = 0; j < i; j++) ret[i + j] += x[i] * x[j] * 2; } return ret; }; for (int d = D; d--;) { ret = self_conv(ret); for (int i = 2 * K - 2; i >= K; i--) { for (int j = 1; j <= K; j++) ret[i - j] -= ret[i] * f_reversed[j]; } ret.resize(K); if ((N >> d) & 1) { std::vector<Tfield> c(K); c[0] = -ret[K - 1] * f_reversed[K]; for (int i = 1; i < K; i++) { c[i] = ret[i - 1] - ret[K - 1] * f_reversed[K - i]; } ret = c; } } return ret; } // Find k-th element of the sequence, assuming linear recurrence // initial_elements: 0-ORIGIN // Verify: abc198f https://atcoder.jp/contests/abc198/submissions/21837815 template <typename Tfield> Tfield find_kth_element(const std::vector<Tfield> &initial_elements, long long k) { assert(k >= 0); if (k < static_cast<long long>(initial_elements.size())) return initial_elements[k]; const auto f = linear_recurrence<Tfield>(initial_elements).second; const auto g = monomial_mod_polynomial<Tfield>(k, f); Tfield ret = 0; for (unsigned i = 0; i < g.size(); i++) ret += g[i] * initial_elements[i]; return ret; } constexpr int mod1 = 1000000009; constexpr int mod2 = 1000000007; constexpr int mod3 = 998244353; using mint = ModInt<mod1>; using mint2 = ModInt<mod2>; using mint3 = ModInt<mod3>; template <typename Int> Int power(Int x, Int n, Int MOD) { Int ans = 1; while (n > 0) { if (n & 1) (ans *= x) %= MOD; (x *= x) %= MOD; n >>= 1; } return ans; } // Solve ax+by=gcd(a, b) template <typename Int> Int extgcd(Int a, Int b, Int &x, Int &y) { Int d = a; if (b != 0) { d = extgcd(b, a % b, y, x), y -= (a / b) * x; } else { x = 1, y = 0; } return d; } // Calculate a^(-1) (MOD m) s if gcd(a, m) == 1 // Calculate x s.t. ax == gcd(a, m) MOD m template <typename Int> Int mod_inverse(Int a, Int m) { Int x, y; extgcd<Int>(a, m, x, y); x %= m; return x + (x < 0) * m; } // Require: 1 <= b // return: (g, x) s.t. g = gcd(a, b), xa = g MOD b, 0 <= x < b/g template <typename Int> constexpr std::pair<Int, Int> inv_gcd(Int a, Int b) { a %= b; if (a < 0) a += b; if (a == 0) return {b, 0}; Int s = b, t = a, m0 = 0, m1 = 1; while (t) { Int u = s / t; s -= t * u, m0 -= m1 * u; auto tmp = s; s = t, t = tmp, tmp = m0, m0 = m1, m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } template <typename Int> constexpr std::pair<Int, Int> crt(const std::vector<Int> &r, const std::vector<Int> &m) { assert(r.size() == m.size()); int n = int(r.size()); // Contracts: 0 <= r0 < m0 Int r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); Int r1 = r[i] % m[i], m1 = m[i]; if (r1 < 0) r1 += m1; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } Int g, im; std::tie(g, im) = inv_gcd<Int>(m0, m1); Int u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; Int x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } // 蟻本 P.262 // 中国剰余定理を利用して,色々な素数で割った余りから元の値を復元 // 連立線形合同式 A * x = B mod M の解 // Requirement: M[i] > 0 // Output: x = first MOD second (if solution exists), (0, 0) (otherwise) template <typename Int> std::pair<Int, Int> linear_congruence(const std::vector<Int> &A, const std::vector<Int> &B, const std::vector<Int> &M) { Int r = 0, m = 1; assert(A.size() == M.size()); assert(B.size() == M.size()); for (int i = 0; i < (int)A.size(); i++) { assert(M[i] > 0); const Int ai = A[i] % M[i]; Int a = ai * m, b = B[i] - ai * r, d = std::__gcd(M[i], a); if (b % d != 0) { return std::make_pair(0, 0); // 解なし } Int t = b / d * mod_inverse<Int>(a / d, M[i] / d) % (M[i] / d); r += m * t; m *= M[i] / d; } return std::make_pair((r < 0 ? r + m : r), m); } __int128 str2i128(std::string str) { __int128 ret = 0; bool minus = false; for (auto c : str) { if (c == '-') minus = true; else ret = ret * 10 + c - '0'; } return minus ? -ret : ret; } std::istream &operator>>(std::istream &is, __int128 &x) { std::string s; return is >> s, x = str2i128(s), is; } std::ostream &operator<<(std::ostream &os, const __int128 &x) { __int128 tmp = x; if (tmp == 0) return os << 0; std::vector<int> ds; if (tmp < 0) { os << '-'; while (tmp) { int d = tmp % 10; if (d > 0) d -= 10; ds.emplace_back(-d), tmp = (tmp - d) / 10; } } else { while (tmp) ds.emplace_back(tmp % 10), tmp /= 10; } std::reverse(ds.begin(), ds.end()); for (auto i : ds) os << i; return os; } int main() { lint K; cin >> K; constexpr int W = 200; using BS = bitset<W * 2 + 1>; vector<BS> bs(W * 2 + 1); bs[W][W] = 1; vector<mint> seq; vector<mint2> seq2; vector<mint3> seq3; REP(t, 100) { vector<BS> nxt = bs; FOR(i, 1 ,bs.size()) { nxt[i - 1] |= bs[i] | (bs[i] << 1) | (bs[i] >> 1); nxt[i + 1] |= (bs[i] << 1) | (bs[i] >> 1); } bs = nxt; int cnt = 0; for (auto b : bs) cnt += b.count(); seq.emplace_back(cnt); seq2.emplace_back(cnt); seq3.emplace_back(cnt); } __int128 m1 = find_kth_element(seq, K - 1).val; __int128 m2 = find_kth_element(seq2, K - 1).val; __int128 m3 = find_kth_element(seq3, K - 1).val; cout << linear_congruence<__int128>({1, 1, 1}, {m1, m2, m3}, {mod1, mod2, mod3}).first << '\n'; }