結果
問題 |
No.1491 銀将
|
ユーザー |
![]() |
提出日時 | 2021-05-01 03:15:05 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 46 ms / 1,000 ms |
コード長 | 706 bytes |
コンパイル時間 | 253 ms |
コンパイル使用メモリ | 82,372 KB |
実行使用メモリ | 59,544 KB |
最終ジャッジ日時 | 2024-07-19 06:41:21 |
合計ジャッジ時間 | 1,805 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 16 |
ソースコード
def polymul(f,g): lf = len(f) lg = len(g) res = [0]*(lf+lg-1) for i in range(lf): for j in range(lg): res[i+j] += f[i]*g[j] res[i+j] %= MOD return res """ [x^N]f/g を O(K^2 log N) で求めるMori法 (K = deg(g)) f,g は多項式 polymul を convolution に変えれば O(K log(K) log N) """ def fps_nth_term(f,g,N): assert g[0] != 0 while N: h = g[:] for i in range(1,len(g),2): h[i] = -h[i] f = polymul(f,h)[N%2:N+1:2] g = polymul(g,h)[:N+1:2] N //= 2 return f[0]*pow(g[0],MOD-2,MOD)%MOD k = int(input()) MOD = 10**22+9 ans = fps_nth_term([1, 3, 3, 1], [1, -3, 3, -1, 0],k) print(ans)