結果
| 問題 | No.572 妖精の演奏 |
| コンテスト | |
| ユーザー |
nanophoto12
|
| 提出日時 | 2021-05-01 13:41:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 13 ms / 2,000 ms |
| コード長 | 5,199 bytes |
| コンパイル時間 | 4,082 ms |
| コンパイル使用メモリ | 259,404 KB |
| 最終ジャッジ日時 | 2025-01-21 05:10:58 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
#include <bits/stdc++.h>
#define M_PI 3.14159265358979323846 // pi
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> P;
typedef tuple<ll, ll, ll> t3;
typedef tuple<ll, ll, ll, ll> t4;
#define rep(a,n) for(ll a = 0;a < n;a++)
#define repi(a,b,n) for(ll a = b;a < n;a++)
#include <bits/stdc++.h>
using namespace std;
template<typename T>
void chmax(T& reference, T value) {
reference = max(reference, value);
}
template<typename T>
void chmaxmap(map<T, T>& m, T key, T value) {
if (m.count(key)) {
chmax(m[key], value);
}
else {
m[key] = value;
}
}
template<typename T>
void chmin(T& reference, T value) {
reference = min(reference, value);
}
#include <atcoder/all>
using namespace atcoder;
typedef modint1000000007 mint;
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T >& operator[](int k) const {
return (A.at(k));
}
inline vector< T >& operator[](int k) {
return (A.at(k));
}
static Matrix Identity(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix& operator+=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix& operator-=(const Matrix& B) {
size_t n = height(), m = width();
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix& operator*=(const Matrix& B) {
size_t n = height(), m = B.width(), p = width();
vector< vector< T > > C(n, vector< T >(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
{
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
}
A.swap(C);
return (*this);
}
Matrix& operator^=(long long k) {
Matrix B = Matrix::Identity(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix& apply(std::function<T(T)> operation) {
size_t n = height(), m = width();
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] = operation((*this)[i][j]);
return (*this);
}
Matrix& pow(long long k, long long mod) {
Matrix B = Matrix::Identity(height());
while (k > 0) {
if (k & 1) {
B *= *this;
B.apply([&](long long v) {return v % mod; });
}
*this *= *this;
apply([&](long long v) {return v % mod; });
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
vector<T> product(const vector<T>& right) {
assert(width() == right.size());
vector<T> left(height());
for (int y = 0; y < height(); y++) {
T sum = 0;
for (int x = 0; x < width(); x++) {
sum += (*this)[y][x] * right[x];
}
left[y] = sum;
}
return left;
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream& operator<<(ostream& os, Matrix& p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
constexpr ll mpow(ll x, ll n) {
ll ans = 1;
while (n != 0) {
if (n & 1) ans = ans * x;
x = x * x;
n = n >> 1;
}
return ans;
}
constexpr ll mpow(ll x, ll n, ll mod) {
ll ans = 1; x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
int main() {
ll n, m;
cin >> n >> m;
vector<vector<ll>> grid(m, vector<ll>(m));
rep(i, m) {
rep(j, m) cin >> grid[i][j];
}
vector<vector<ll>> dp[64];
rep(i, 64) dp[i].assign(m, vector<ll>(m, 0));
dp[0] = grid;
for (int i = 1; i < 62;i++) {
rep(j, m) {
rep(k, m) {
rep(x, m) {
ll v = dp[i - 1][j][x] + dp[i - 1][x][k];
chmax(dp[i][j][k], v);
}
}
}
}
n--;
vector<ll> c(m, 0);
rep(i, 62) {
if (n >> i & 1) {
vector<ll> nc(m, 0);
rep(j, m) {
rep(k, m) {
chmax(nc[k], c[j] + dp[i][j][k]);
}
}
swap(c, nc);
}
}
ll ans = 0;
rep(i, m) {
chmax(ans, c[i]);
}
cout << ans << endl;
return 0;
}
nanophoto12