結果

問題 No.310 2文字しりとり
ユーザー pekempey
提出日時 2015-12-13 15:23:41
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
WA  
実行時間 -
コード長 3,850 bytes
コンパイル時間 2,860 ms
コンパイル使用メモリ 170,500 KB
実行使用メモリ 634,240 KB
最終ジャッジ日時 2024-09-15 11:42:40
合計ジャッジ時間 9,881 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 14 WA * 7 MLE * 1 -- * 6
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In member function ‘std::vector<long long int> SparseDeterminant::minpoly_vector(std::vector<std::vector<long long int> >)’:
main.cpp:60:9: warning: no return statement in function returning non-void [-Wreturn-type]
   60 |         }
      |         ^
main.cpp: In member function ‘std::vector<long long int> SparseDeterminant::minpoly_matrix(std::vector<std::vector<long long int> >)’:
main.cpp:64:9: warning: no return statement in function returning non-void [-Wreturn-type]
   64 |         }
      |         ^

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define GET_MACRO(a, b, c, NAME, ...) NAME
#define rep(...) GET_MACRO(__VA_ARGS__, rep3, rep2)(__VA_ARGS__)
#define rep2(i, a) rep3 (i, 0, a)
#define rep3(i, a, b) for (int i = (a); i < (b); i++)
#define repr(...) GET_MACRO(__VA_ARGS__, repr3, repr2)(__VA_ARGS__)
#define repr2(i, a) repr3 (i, 0, a)
#define repr3(i, a, b) for (int i = (b) - 1; i >= (a); i--)
template<class T1, class T2> inline bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }
template<class T1, class T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
using namespace std;
typedef long long ll;
const ll mod = 1e9 + 7;
struct SparseDeterminant {
unsigned long long xor64() {
static unsigned long long x = time(NULL);
x ^= x << 13; x ^= x >> 7; x ^= x << 17;
return x;
}
vector<ll> random_vector(int n) {
vector<ll> res(n);
rep (i, n) res[i] = xor64() % mod;
return res;
}
// Berlekamp-Massey algorithm
vector<ll> minpoly(vector<ll> a) {
const int N = a.size();
vector<ll> b(N), c(N), t(N);
b[0] = 1;
c[0] = 1;
int l = 0;
int m = -1;
for (int n = 0; n < N; n++) {
int d = 0;
for (int i = 0; i <= l; i++) {
(d += c[i] * a[n - i]) %= mod;
}
if (d == 1) {
t = c;
int N_M = n - m;
for (int j = 0; j < N - N_M; j++) {
(c[N_M + j] += b[j]) %= mod;
}
if (l <= n / 2) {
l = n + 1 - l;
m = n;
b = t;
}
}
}
return c;
}
vector<ll> minpoly_vector(vector<vector<ll>> b) {
// TODO: implement
}
vector<ll> minpoly_matrix(vector<vector<ll>> A) {
// TODO: implement
}
};
ll F[5050];
ll modpow(ll a, ll b, ll mod) {
ll res = 1;
while (b) {
if (b & 1) (res *= a) %= mod;
(a *= a) %= mod;
b /= 2;
}
return res;
}
ll modinv(ll a, ll mod) {
return modpow(a, mod - 2, mod);
}
void show(vector<vector<ll>> A) {
rep (i, A.size()) {
rep (j, A[0].size()) {
cout << A[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
ll det(vector<vector<ll>> A) {
int n = A.size();
rep (j, n) {
rep (i, j, n) {
if (A[i][j] != 0) {
swap(A[j], A[i]);
break;
}
}
ll inv = modinv(A[j][j], mod);
rep (i, j + 1, n) {
repr (k, j, n) {
A[i][k] -= A[i][j] * A[j][k] % mod * inv % mod;
if (A[i][k] < 0) A[i][k] += mod;
}
}
}
ll res = 1;
rep (i, n) (res *= A[i][i]) %= mod;
return res;
}
vector<vector<ll>> remove(vector<vector<ll>> A, int y, int x) {
int N = A.size();
rep (i, N) {
rep (j, x, N - 1) A[i][j] = A[i][j + 1];
}
rep (j, N) {
rep (i, y, N - 1) A[i][j] = A[i + 1][j];
}
rep (i, N) A[i].resize(N - 1);
A.resize(N - 1);
return A;
}
int main() {
F[0] = 1;
rep (i, 1, 5050) F[i] = i * F[i - 1] % mod;
int N, M;
cin >> N >> M;
vector<vector<ll>> L(N, vector<ll>(N)); // laplacian matrix
vector<vector<ll>> A(N, vector<ll>(N)); // adjacent matrix
vector<vector<ll>> D(N, vector<ll>(N)); // degree matrix
vector<int> outdeg(N, N), indeg(N, N);
rep (i, N) rep (j, N) A[i][j] = 1;
rep (i, N) D[i][i] = N;
rep (i, M) {
int u, v;
cin >> u >> v;
u--; v--;
D[u][u]--;
A[u][v] = 0;
outdeg[u]--;
indeg[v]--;
}
int u = -1, v = -1;
rep (i, N) {
if (indeg[i] == outdeg[i] - 1) {
if (u == -1) {
u = i;
} else {
cout << 0 << endl;
return 0;
}
} else if (indeg[i] == outdeg[i] + 1) {
if (v == -1) {
v = i;
} else {
cout << 0 << endl;
return 0;
}
} else if (indeg[i] != outdeg[i]) {
cout << 0 << endl;
return 0;
}
}
bool cycle = false;
if (u == -1 && v == -1) {
u = 0, v = 0;
cycle = true;
} else if (u != -1 ^ v != -1) {
cout << 0 << endl;
return 0;
}
rep (i, N) rep (j, N) L[i][j] = D[i][j] - A[i][j];
auto Lw = remove(L, u, u);
ll d = det(Lw);
ll ans = d;
rep (i, N) (ans *= F[outdeg[i] - 1]) %= mod;
if (cycle) (ans *= N * N - M) %= mod;
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0