結果
問題 | No.310 2文字しりとり |
ユーザー | pekempey |
提出日時 | 2015-12-13 16:09:36 |
言語 | C++11 (gcc 11.4.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 4,879 bytes |
コンパイル時間 | 2,295 ms |
コンパイル使用メモリ | 174,864 KB |
実行使用メモリ | 634,368 KB |
最終ジャッジ日時 | 2024-09-15 11:43:03 |
合計ジャッジ時間 | 9,747 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 4 ms
5,376 KB |
testcase_20 | AC | 5 ms
5,376 KB |
testcase_21 | MLE | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
コンパイルメッセージ
main.cpp: In member function ‘std::vector<long long int> SparseDeterminant::minpoly_vector(std::vector<std::vector<long long int> >)’: main.cpp:81:9: warning: no return statement in function returning non-void [-Wreturn-type] 81 | } | ^ main.cpp: In member function ‘std::vector<long long int> SparseDeterminant::minpoly_matrix(std::vector<std::vector<long long int> >)’: main.cpp:85:9: warning: no return statement in function returning non-void [-Wreturn-type] 85 | } | ^
ソースコード
#include <bits/stdc++.h> #define GET_MACRO(a, b, c, NAME, ...) NAME #define rep(...) GET_MACRO(__VA_ARGS__, rep3, rep2)(__VA_ARGS__) #define rep2(i, a) rep3 (i, 0, a) #define rep3(i, a, b) for (int i = (a); i < (b); i++) #define repr(...) GET_MACRO(__VA_ARGS__, repr3, repr2)(__VA_ARGS__) #define repr2(i, a) repr3 (i, 0, a) #define repr3(i, a, b) for (int i = (b) - 1; i >= (a); i--) template<class T1, class T2> inline bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using namespace std; typedef long long ll; const ll mod = 1e9 + 7; struct UF { vector<int> parent, size; UF(int n) : parent(n), size(n, 1) { rep (i, n) parent[i] = i; } int root(int x) { if (x == parent[x]) return x; else return parent[x] = root(parent[x]); } void merge(int x, int y) { x = root(x); y = root(y); if (x == y) return; if (size[x] < size[y]) swap(x, y); size[x] += size[y]; parent[y] = x; } bool same(int x, int y) { return root(x) == root(y); } }; struct SparseDeterminant { unsigned long long xor64() { static unsigned long long x = time(NULL); x ^= x << 13; x ^= x >> 7; x ^= x << 17; return x; } vector<ll> random_vector(int n) { vector<ll> res(n); rep (i, n) res[i] = xor64() % mod; return res; } // Berlekamp-Massey algorithm vector<ll> minpoly(vector<ll> a) { const int N = a.size(); vector<ll> b(N), c(N), t(N); b[0] = 1; c[0] = 1; int l = 0; int m = -1; for (int n = 0; n < N; n++) { int d = 0; for (int i = 0; i <= l; i++) { (d += c[i] * a[n - i]) %= mod; } if (d == 1) { t = c; int N_M = n - m; for (int j = 0; j < N - N_M; j++) { (c[N_M + j] += b[j]) %= mod; } if (l <= n / 2) { l = n + 1 - l; m = n; b = t; } } } return c; } vector<ll> minpoly_vector(vector<vector<ll>> b) { // TODO: implement } vector<ll> minpoly_matrix(vector<vector<ll>> A) { // TODO: implement } }; ll F[5050]; ll modpow(ll a, ll b, ll mod) { ll res = 1; while (b) { if (b & 1) (res *= a) %= mod; (a *= a) %= mod; b /= 2; } return res; } ll modinv(ll a, ll mod) { return modpow(a, mod - 2, mod); } void show(vector<vector<ll>> A) { rep (i, A.size()) { rep (j, A[0].size()) { cout << A[i][j] << " "; } cout << endl; } cout << endl; } ll det(vector<vector<ll>> A) { int n = A.size(); rep (j, n) { rep (i, j, n) { if (A[i][j] != 0) { swap(A[j], A[i]); break; } } ll inv = modinv(A[j][j], mod); rep (i, j + 1, n) { repr (k, j, n) { A[i][k] -= A[i][j] * A[j][k] % mod * inv % mod; if (A[i][k] < 0) A[i][k] += mod; } } } ll res = 1; rep (i, n) if (A[i][i] != 0) (res *= A[i][i]) %= mod; return res; } vector<vector<ll>> remove(vector<vector<ll>> A, vector<char> rm) { int N = A.size(); int cnt = 0; rep (i, N) { if (rm[i]) cnt++; rep (j, N) if (j + cnt < N) A[i][j] = A[i][j + cnt]; } cnt = 0; rep (j, N) { if (rm[j]) cnt++; rep (i, N) if (i + cnt < N) A[i][j] = A[i + cnt][j]; } rep (i, N) A[i].resize(N - cnt); A.resize(N - cnt); return A; } int main() { F[0] = 1; rep (i, 1, 5050) F[i] = i * F[i - 1] % mod; int N, M; cin >> N >> M; vector<vector<ll>> L(N, vector<ll>(N)); // laplacian matrix vector<vector<ll>> A(N, vector<ll>(N)); // adjacent matrix vector<vector<ll>> D(N, vector<ll>(N)); // degree matrix vector<int> outdeg(N, N), indeg(N, N); rep (i, N) rep (j, N) A[i][j] = 1; rep (i, N) D[i][i] = N; rep (i, M) { int u, v; cin >> u >> v; u--; v--; D[u][u]--; A[u][v] = 0; outdeg[u]--; indeg[v]--; } UF uf(N); rep (i, N) rep (j, N) { if (A[i][j]) uf.merge(i, j); } int kind = -1; rep (i, N) if (indeg[i] > 0 || outdeg[i] > 0) { if (kind == -1) { kind = uf.root(i); } else { if (kind != uf.root(i)) { cout << 0 << endl; return 0; } } } int u = -1, v = -1; rep (i, N) { if (indeg[i] == outdeg[i] + 1) { if (u == -1) { u = i; } else { cout << 0 << endl; return 0; } } else if (indeg[i] == outdeg[i] - 1) { if (v == -1) { v = i; } else { cout << 0 << endl; return 0; } } else if (indeg[i] != outdeg[i]) { cout << 0 << endl; return 0; } } bool cycle = false; if (u == -1 && v == -1) { u = 0, v = 0; cycle = true; } else if (u != -1 ^ v != -1) { cout << 0 << endl; return 0; } if (!cycle) { D[u][v]++; A[u][v] = 1; outdeg[u]++; indeg[v]++; } rep (i, N) rep (j, N) L[i][j] = D[i][j] - A[i][j]; vector<char> rm(N); rm[u] = true; // rep (i, N) if (indeg[i] == 0 && outdeg[i] == 0) rm[i] = true; auto Lw = remove(L, rm); ll d = det(Lw); ll ans = d; rep (i, N) if (outdeg[i] > 0) (ans *= F[outdeg[i] - 1]) %= mod; if (cycle) (ans *= N * N - M) %= mod; if (N * N - M == 0) ans = 1; cout << ans << endl; return 0; }