結果
問題 | No.1521 Playing Musical Chairs Alone |
ユーザー |
![]() |
提出日時 | 2021-05-05 00:06:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,556 bytes |
コンパイル時間 | 3,473 ms |
コンパイル使用メモリ | 201,920 KB |
最終ジャッジ日時 | 2025-01-21 07:00:34 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 8 WA * 15 |
ソースコード
#include <bits/stdc++.h> #include <atcoder/modint> using namespace std; #pragma region datastructure Matrix #include <cassert> #include <iostream> #include <vector> template <class T> struct Matrix { private: std::vector<std::vector<T>> A; static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return mat; } public: Matrix() = default; Matrix(std::vector<std::vector<T>> &vvec) { A = vvec; } Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, 0)) {} Matrix(size_t n, size_t m, T init) : A(n, std::vector<T>(m, init)) {} Matrix(size_t n, std::vector<T> &vec) : A(n, vec) {} Matrix(size_t n) : A(n, std::vector<T>(n, 0)) {} size_t height() const { return A.size(); } size_t width() const { return A[0].size(); } inline const std::vector<T> &operator[](int k) const { return A[k]; } inline std::vector<T> &operator[](int k) { return A[k]; } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() and m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return *this; } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() and m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return *this; } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); std::vector<std::vector<T>> C(n, std::vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] += (*this)[i][k] * B[k][j]; A.swap(C); return *this; } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= (*this); *this *= *this; k >>= 1ll; } A.swap(B.A); return *this; } bool operator==(const Matrix &B) { size_t n = height(), m = width(); if(n != B.height() or m != B.width()) return false; for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) if((*this)[i][j] != B[i][j]) return false; return true; } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long &k) const { return (Matrix(*this) ^= k); } Matrix &operator+=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += t; return *this; } Matrix &operator-=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= t; return *this; } Matrix &operator*=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] *= t; return *this; } Matrix &operator/=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] /= t; return *this; } Matrix operator+(const T &t) const { return (Matrix(*this) += t); } Matrix operator-(const T &t) const { return (Matrix(*this) -= t); } Matrix operator*(const T &t) const { return (Matrix(*this) *= t); } Matrix operator/(const T &t) const { return (Matrix(*this) /= t); } friend std::ostream &operator<<(std::ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << '['; for(int j = 0; j < m; j++) os << p[i][j] << (j == m - 1 ? "]\n" : ","); } return (os); } T determinant() { Matrix B(*this); size_t n = height(), m = width(); assert(n == m); T ret = 1; for(int i = 0; i < n; i++) { int idx = -1; for(int j = i; j < n; j++) if(B[j][i] != 0) idx = j; if(idx == -1) return 0; if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < n; j++) B[i][j] /= vv; for(int j = i + 1; j < n; j++) { T a = B[j][i]; for(int k = 0; k < n; k++) { B[j][k] -= B[i][k] * a; } } } return ret; } }; #pragma endregion using mint = atcoder::modint1000000007; int n, k, l; int main() { cin >> n >> k >> l; Matrix<mint> mat(1, n), mul(n, n); mat[0][0] = 1; for(int i = 0; i < n; i++) for(int j = 1; j <= l; j++) mul[(i + j) % n][i] = 1; mat *= mul ^ k; for(int i = 0; i < n; i++) cout << mat[0][i].val() << '\n'; return 0; }