結果
| 問題 |
No.526 フィボナッチ数列の第N項をMで割った余りを求める
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-05-05 22:56:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 18 ms / 2,000 ms |
| コード長 | 5,173 bytes |
| コンパイル時間 | 2,176 ms |
| コンパイル使用メモリ | 209,296 KB |
| 最終ジャッジ日時 | 2025-01-21 07:39:43 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
//@Author: KeinYukiyoshi
// clang-format off
#include <bits/stdc++.h>
//#pragma GCC optimize("Ofast")
//#pragma GCC target("avx")
#define int long long
using namespace std;
#define stoi stoll
#define fi first
#define se second
#define rep(i, n) for(int i=0, i##_len=(n); i<i##_len; i++)
#define rep2(i, a, b) for (int i = (int)(a), i##_len=(b); i < i##_len; i++)
#define rep3(i, a, b) for (int i = (int)(a), i##_len=(b); i >= i##_len; i--)
#define FOR(i, a) for (auto &i: a)
#define ALL(obj) begin(obj), end(obj)
#define _max(x) *max_element(ALL(x))
#define _min(x) *min_element(ALL(x))
#define _sum(x) accumulate(ALL(x), 0LL)
int MOD = 1000000007;
// const int MOD = 998244353;
// const int INF = (int)1e18;
// const int INF = 10000000000007; // 1e13 + 7
// const int INF = LLONG_MAX; // 9.2e18
const double EPS = 1e-8;
const double PI = 3.14159265358979;
template <class T> using V = vector<T>;
template <class T> using VV = vector<vector<T>>;
template <class T> using VVV = vector<vector<vector<T>>>;
template <class T, class S> using P = pair<T, S>;
template<class T> bool chmax(T &a, const T &b) {if (a < b) {a = b;return true;}return false;}
template<class T> bool chmin(T &a, const T &b) {if (b < a) {a = b;return true;}return false;}
int _ceil(int a, int b) { return (a >= 0 ? (a + (b - 1)) / b : (a - (b - 1)) / b); }
template<class T> T chmod(T &a, T mod=MOD) {a = a >= 0 ? a % mod : a - (mod * _ceil(a, mod)); return a;};
int _mod(int a, int mod=MOD) {return a >= 0 ? a % mod : a - (mod * _ceil(a, mod));}
int _pow(int a, int b) {int res = 1;for (a %= MOD; b; a = a * a % MOD, b >>= 1)if (b & 1) res = res * a % MOD;return res;}
struct mint {long long x;mint(long long x = 0) : x((x % MOD + MOD) % MOD) {}mint operator-() const { return mint(-x); }mint &operator+=(const mint a) {if ((x += a.x) >= MOD) x -= MOD;return *this;}mint &operator-=(const mint a) {if ((x += MOD - a.x) >= MOD) x -= MOD;return *this;}mint &operator*=(const mint a) { (x *= a.x) %= MOD;return *this; }mint operator+(const mint a) const { return mint(*this) += a; }mint operator-(const mint a) const { return mint(*this) -= a; } mint operator*(const mint a) const { return mint(*this) *= a; }mint pow(long long t) const {if (!t) return 1;mint a = pow(t >> 1);a *= a;if (t & 1) a *= *this;return a;}mint inv() const { return pow(MOD - 2); }mint &operator/=(const mint a) { return *this *= a.inv(); }mint operator/(const mint a) const { return mint(*this) /= a; }};istream &operator>>(istream &is, mint &a) { return is >> a.x; }ostream &operator<<(ostream &os, const mint &a) { return os << a.x; }
// clang-format on
template <class T>
struct matrix {
int row; // 行
int column; // 列
vector<vector<T>> M;
matrix(vector<vector<T>> &m) : row(m.size()), column(m[0].size()) { M = m; }
matrix add(matrix &m) { // M += m
for (int i = 0; i < row; i++)
for (int j = 0; j < column; j++) M[i][j] += m.M[i][j];
return M;
}
matrix subtract(matrix &m) { // M -= m
for (int i = 0; i < row; i++)
for (int j = 0; j < column; j++) M[i][j] -= m.M[i][j];
return M;
}
void multiply_from_right(matrix &m) { //M = M*m O(n^3)
vector<vector<T>> temp(row, vector<T>(m.column));
for (int i = 0; i < row; i++)
for (int j = 0; j < m.column; j++)
for (int k = 0; k < column; k++) {
temp[i][j] += M[i][k] * m.M[k][j];
}
M = temp, row = M.size(), column = M[0].size();
}
void multiply_from_left(matrix &m) { //M = m*M O(n^3)
vector<vector<T>> temp(m.row, vector<T>(column));
for (int i = 0; i < m.row; i++)
for (int j = 0; j < column; j++)
for (int k = 0; k < m.column; k++) temp[i][j] += m.M[i][k] * M[k][j];
M = temp, row = M.size(), column = M[0].size();
}
void pow(int b) { // M = pow(M, n) O(n^3log b)
int n = row;
vector<vector<T>> ret(n, vector<T>(n));
for (int i = 0; i < n; i++) ret[i][i] = 1;
for (; b; b >>= 1) {
if (b & 1) {
vector<vector<T>> temp(n, vector<T>(n));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++) temp[i][j] += ret[i][k] * M[k][j];
ret = temp;
}
vector<vector<T>> temp(row, vector<T>(column));
for (int i = 0; i < row; i++)
for (int j = 0; j < column; j++)
for (int k = 0; k < column; k++) temp[i][j] += M[i][k] * M[k][j];
M = temp;
}
M = ret;
}
void show() {
for (int i = 0; i < row; i++) {
for (int j = 0; j < column; j++) cout << M[i][j] << " ";
cout << endl;
}
}
};
class No526NM {
public:
static void solve(istream &cin, ostream &cout) {
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
int N, M;
cin >> N >> M;
MOD = M;
VV<mint> A = {{0, 1}, {1, 1}};
VV<mint> temp = {{0}, {1}};
matrix<mint> a(A);
matrix<mint> b(temp);
a.pow(N - 2);
b.multiply_from_left(a);
cout << b.M[1][0] << endl;
}
};
signed main() {
No526NM solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
solver.solve(in, out);
return 0;
}