結果
| 問題 |
No.1502 Many Simple Additions
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2021-05-07 22:30:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 62 ms / 2,000 ms |
| コード長 | 9,023 bytes |
| コンパイル時間 | 2,294 ms |
| コンパイル使用メモリ | 207,320 KB |
| 最終ジャッジ日時 | 2025-01-21 08:26:01 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 39 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int val;
MInt(): val(0) {}
MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(int divisor) { assert(divisor == M); }
static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
static MInt inv(int x, bool init = false) {
// assert(0 <= x && x < M && std::__gcd(x, M) == 1);
static std::vector<MInt> inverse{0, 1};
int prev = inverse.size();
if (init && x >= prev) {
// "x!" and "M" must be disjoint.
inverse.resize(x + 1);
for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
}
if (x < inverse.size()) return inverse[x];
unsigned int a = x, b = M; int u = 1, v = 0;
while (b) {
unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(int x) {
static std::vector<MInt> f{1};
int prev = f.size();
if (x >= prev) {
f.resize(x + 1);
for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
}
return f[x];
}
static MInt fact_inv(int x) {
static std::vector<MInt> finv{1};
int prev = finv.size();
if (x >= prev) {
finv.resize(x + 1);
finv[x] = inv(fact(x).val);
for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
}
return finv[x];
}
static MInt nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return 0;
if (n - k > k) k = n - k;
return fact(n) * fact_inv(k) * fact_inv(n - k);
}
static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
static MInt large_nCk(long long n, int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
return res;
}
MInt pow(long long exponent) const {
MInt tmp = *this, res = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
bool operator==(const MInt &x) const { return val == x.val; }
bool operator!=(const MInt &x) const { return val != x.val; }
bool operator<(const MInt &x) const { return val < x.val; }
bool operator<=(const MInt &x) const { return val <= x.val; }
bool operator>(const MInt &x) const { return val > x.val; }
bool operator>=(const MInt &x) const { return val >= x.val; }
MInt &operator++() { if (++val == M) val = 0; return *this; }
MInt operator++(int) { MInt res = *this; ++*this; return res; }
MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
MInt operator--(int) { MInt res = *this; --*this; return res; }
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(val ? M - val : 0); }
MInt operator+(const MInt &x) const { return MInt(*this) += x; }
MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;
template <typename CostType>
struct Edge {
int src, dst; CostType cost;
Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
inline bool operator<(const Edge &x) const {
return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
}
inline bool operator<=(const Edge &x) const { return !(x < *this); }
inline bool operator>(const Edge &x) const { return x < *this; }
inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
int main() {
int n, m, k; cin >> n >> m >> k;
vector<vector<Edge<int>>> graph(n);
while (m--) {
int x, y, z; cin >> x >> y >> z; --x; --y;
graph[x].emplace_back(x, y, z);
graph[y].emplace_back(y, x, z);
}
ModInt ans1 = 1, ans2 = 0;
vector<int> visited(n, 0);
vector<bool> visited2(n, false);
vector<ll> sum(n, 0);
REP(i, n) {
if (visited[i] != 0) continue;
auto f = [&](auto &&f, int par, int ver) -> bool {
for (const Edge<int> &e : graph[ver]) {
if (e.dst == par) continue;
if (visited[ver] * visited[e.dst] == 1) {
ll r = e.cost - sum[ver] - sum[e.dst];
if (visited[ver] == -1) r = -r;
if (r % 2 == 1 || r / 2 <= 0 || r / 2 > k) {
cout << 0 << '\n';
exit(0);
}
sum[i] = r / 2;
return true;
} else if (visited[ver] * visited[e.dst] == -1) {
if (sum[ver] + sum[e.dst] != e.cost) {
cout << 0 << '\n';
exit(0);
}
} else {
visited[e.dst] = -visited[ver];
sum[e.dst] = e.cost - sum[ver];
if (f(f, ver, e.dst)) return true;
}
}
return false;
};
visited[i] = 1;
if (f(f, -1, i)) {
auto g = [&](auto &&g, int par, int ver) -> bool {
bool exist_k = false;
for (const Edge<int> &e : graph[ver]) {
if (e.dst == par) continue;
if (visited2[e.dst]) {
if (sum[ver] + sum[e.dst] != e.cost) {
cout << 0 << '\n';
exit(0);
}
} else {
sum[e.dst] = e.cost - sum[ver];
if (sum[e.dst] <= 0 || k < sum[e.dst]) {
cout << 0 << '\n';
exit(0);
}
visited[e.dst] = 1;
visited2[e.dst] = true;
exist_k |= sum[e.dst] == k || g(g, ver, e.dst);
}
}
return exist_k;
};
visited2[i] = true;
if (g(g, -1, i) || sum[i] == k) {
ans2 += ans1;
ans1 = 0;
}
} else {
int lb = 1, ub = k;
vector<int> check;
auto g = [&](auto &&g, int par, int ver) -> void {
for (const Edge<int> &e : graph[ver]) {
if (e.dst != par && !visited2[e.dst]) {
if (visited[e.dst] == 1) {
chmax(lb, 1 - sum[e.dst]);
chmin(ub, k - sum[e.dst]);
} else {
chmax(lb, sum[e.dst] - k);
chmin(ub, sum[e.dst] - 1);
}
visited2[e.dst] = true;
check.emplace_back(e.dst);
g(g, ver, e.dst);
}
}
};
visited2[i] = true;
g(g, -1, i);
if (lb > ub) {
cout << 0 << '\n';
return 0;
}
bool lb_has_k = lb == k, ub_has_k = ub == k;
for (int ver : check) {
if (visited[ver] == 1) {
assert(1 <= sum[ver] + lb && sum[ver] + lb <= k);
lb_has_k |= sum[ver] + lb == k;
assert(1 <= sum[ver] + ub && sum[ver] + ub <= k);
ub_has_k |= sum[ver] + ub == k;
} else {
assert(1 <= sum[ver] - lb && sum[ver] - lb <= k);
lb_has_k |= sum[ver] - lb == k;
assert(1 <= sum[ver] - ub && sum[ver] - ub <= k);
ub_has_k |= sum[ver] - ub == k;
}
}
if (lb < ub) {
ModInt nx_ans1 = 0, nx_ans2 = ans2 * (ub - lb + 1);
(lb_has_k ? nx_ans2 : nx_ans1) += ans1;
(ub_has_k ? nx_ans2 : nx_ans1) += ans1;
nx_ans1 += ans1 * (ub - lb - 1);
swap(ans1, nx_ans1);
swap(ans2, nx_ans2);
} else {
assert(lb_has_k == ub_has_k);
if (lb_has_k) {
ans2 += ans1;
ans1 = 0;
}
}
}
}
cout << ans2 << '\n';
return 0;
}
emthrm