結果
| 問題 | No.1502 Many Simple Additions | 
| コンテスト | |
| ユーザー |  ansain | 
| 提出日時 | 2021-05-07 23:10:40 | 
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 3,572 bytes | 
| コンパイル時間 | 151 ms | 
| コンパイル使用メモリ | 12,928 KB | 
| 実行使用メモリ | 85,216 KB | 
| 最終ジャッジ日時 | 2024-09-15 11:17:15 | 
| 合計ジャッジ時間 | 13,142 ms | 
| ジャッジサーバーID (参考情報) | judge6 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 5 | 
| other | AC * 38 WA * 1 | 
ソースコード
import sys
from collections import defaultdict, Counter, deque
from itertools import permutations, combinations, product, combinations_with_replacement, groupby, accumulate
import operator
from math import sqrt, gcd, factorial
# from math import isqrt, prod,comb  # python3.8用(notpypy)
#from bisect import bisect_left,bisect_right
#from functools import lru_cache,reduce
#from heapq import heappush,heappop,heapify,heappushpop,heapreplace
#import numpy as np
#import networkx as nx
#from networkx.utils import UnionFind
#from numba import njit, b1, i1, i4, i8, f8
#from scipy.sparse import csr_matrix
#from scipy.sparse.csgraph import shortest_path, floyd_warshall, dijkstra, bellman_ford, johnson, NegativeCycleError
# numba例 @njit(i1(i4[:], i8[:, :]),cache=True) 引数i4配列、i8 2次元配列,戻り値i1
def input(): return sys.stdin.readline().rstrip()
def divceil(n, k): return 1+(n-1)//k  # n/kの切り上げを返す
def yn(hantei, yes='Yes', no='No'): print(yes if hantei else no)
def main():
    mod = 10**9+7
    mod2 = 998244353
    n, m, k = map(int, input().split())
    graph = [[] for _ in range(n)]
    for i in range(m):
        a, b, c = map(lambda x: int(x)-1, input().split())
        graph[a].append((b, c+1))
        graph[b].append((a, c+1))
    dist = [-1]*n
    kans = 1
    lessk = 1
    for i in range(n):
        if dist[i] != -1:
            continue
        dist[i] = [1, 0]
        d = deque()
        d.append(i)
        used = dict()
        point = set([i])
        while d:
            v = d.popleft()
            for i, num in graph[v]:
                used[(v, i)] = num
                if dist[i] != -1:
                    continue
                dist[i] = [-dist[v][0], -dist[v][1]+num]
                point.add(i)
                d.append(i)
        kakutei = None
        for (a, b), num in used.items():
            aa1, aa2 = dist[a]
            bb1, bb2 = dist[b]
            if aa1+bb1 == 0:
                if aa2+bb2 != num:
                    print(0)
                    return
            else:
                if (aa1+bb1) % 2 == 1:
                    print(0)
                    return
                else:
                    if kakutei == None:
                        kakutei = (num-aa2-bb2)//(aa1+bb1)
                    elif kakutei != (num-aa2-bb2)//(aa1+bb1):
                        print(0)
                        return
        if kakutei == None:
            plusmax = max(dist[p][1] if dist[p][0] ==
                          1 else -10**10 for p in point)
            plusmin = min(dist[p][1] if dist[p][0] ==
                          1 else 10**10 for p in point)
            minusmax = max(dist[p][1] if dist[p][0] == -
                           1 else -10**10 for p in point)
            minusmin = min(dist[p][1] if dist[p][0] == -
                           1 else 10**10 for p in point)
            kans *= max(0, min(k-plusmax, minusmin-1) -
                        max(-plusmin+1, -k+minusmax)+1)
            kans %= mod
            lessk *= max(0, min(k-1-plusmax, minusmin-1) -
                         max(-plusmin+1, -k+1+minusmax)+1)
            lessk %= mod
        else:
            kans *= int(all(1 <= dist[p][0]*kakutei +
                            dist[p][1] <= k for p in point))
            lessk *= int(all(1 <= dist[p][0]*kakutei +
                             dist[p][1] <= k-1 for p in point))
    print((kans-lessk)%mod)
    #print(kans,lessk,kakutei,dist,min(k-plusmax, minusmin+1),max(-plusmin-1, -k+minusmax))
if __name__ == '__main__':
    main()
            
            
            
        