結果

問題 No.1501 酔歩
ユーザー 👑 tute7627tute7627
提出日時 2021-05-07 23:34:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 22,665 bytes
コンパイル時間 3,983 ms
コンパイル使用メモリ 248,432 KB
実行使用メモリ 26,496 KB
最終ジャッジ日時 2024-09-15 11:39:30
合計ジャッジ時間 7,887 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 TLE -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});
  return ord;
}
ll FLOOR(ll n,ll div){return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){return n>=0?(n+div-1)/div:n/div;}
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v,w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0},
                     {1, 0}};

void ensure_capacity(int min_capacity) {
    for (int len = roots.size(); len < min_capacity; len *= 2) {
        for (int i = len >> 1; i < len; i++) {
            roots.emplace_back(roots[i]);
            double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
            roots.emplace_back(cos(angle), sin(angle));
        }
    }
}

void fft(vector<cpx> &z, bool inverse) {
    int n = z.size();
    assert((n & (n - 1)) == 0);
    ensure_capacity(n);
    for (unsigned i = 1, j = 0; i < n; i++) {
        int bit = n >> 1;
        for (; j >= bit; bit >>= 1)
            j -= bit;
        j += bit;
        if (i < j)
            swap(z[i], z[j]);
    }
    for (int len = 1; len < n; len <<= 1) {
        for (int i = 0; i < n; i += len * 2) {
            for (int j = 0; j < len; j++) {
                cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
                cpx u = z[i + j];
                cpx v = z[i + j + len] * root;
                z[i + j] = u + v;
                z[i + j + len] = u - v;
            }
        }
    }
    if (inverse)
        for (int i = 0; i < n; i++)
            z[i] /= n;
}

vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
    int need = a.size() + b.size();
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> p(n);
    for (size_t i = 0; i < n; i++) {
        p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
    }
    fft(p, false);
    // a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
    // b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
    vector<cpx> ab(n);
    cpx r(0, -0.25);
    for (int i = 0; i < n; i++) {
        int j = (n - i) & (n - 1);
        ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
    }
    fft(ab, true);
    vector<int> result(need);
    long long carry = 0;
    for (int i = 0; i < need; i++) {
        long long d = (long long) (ab[i].real() + 0.5) + carry;
        carry = d / base;
        result[i] = d % base;
    }
    return result;
}

vector<int> multiply_mod(const vector<int> &a, const vector<int> &b, int m) {
    int need = a.size() + b.size() - 1;
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> A(n);
    for (size_t i = 0; i < a.size(); i++) {
        int x = (a[i] % m + m) % m;
        A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(A, false);

    vector<cpx> B(n);
    for (size_t i = 0; i < b.size(); i++) {
        int x = (b[i] % m + m) % m;
        B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(B, false);

    vector<cpx> fa(n);
    vector<cpx> fb(n);
    for (int i = 0, j = 0; i < n; i++, j = n - i) {
        cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
        cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
        cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
        cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
        fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
        fb[i] = a1 * b2 + a2 * b1;
    }

    fft(fa, true);
    fft(fb, true);
    vector<int> res(need);
    for (int i = 0; i < need; i++) {
        long long aa = (long long) (fa[i].real() + 0.5);
        long long bb = (long long) (fb[i].real() + 0.5);
        long long cc = (long long) (fa[i].imag() + 0.5);
        res[i] = (aa % m + (bb % m << 15) + (cc % m << 30)) % m;
    }
    return res;
}
constexpr int digits(int base) noexcept {
    return base <= 1 ? 0 : 1 + digits(base / 10);
}
constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);

constexpr int fft_base = 10'000; // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);

struct bigint {
    // value == 0 is represented by empty z
    vector<int> z; // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint(long long v = 0) {
        *this = v;
    }

    bigint &operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int) (v % base));
        return *this;
    }

    bigint(const string &s) {
        read(s);
    }

    bigint &operator+=(const bigint &other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint &b) {
        a += b;
        return a;
    }

    bigint &operator-=(const bigint &other) {
        if (sign == other.sign) {
            if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint &b) {
        a -= b;
        return a;
    }

    bigint &operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long) z[i] * v + carry;
            carry = (int) (cur / base);
            z[i] = (int) (cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const {
        return bigint(*this) *= v;
    }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int) a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int) (((long long) s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
                            (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int) (((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const {
        return divmod(*this, v).first;
    }

    bigint operator%(const bigint &v) const {
        return divmod(*this, v).second;
    }

    bigint &operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long) base;
            z[i] = (int) (cur / v);
            rem = (int) (cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const {
        return bigint(*this) /= v;
    }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int) z.size() - 1; i >= 0; --i)
            m = (int) ((z[i] + m * (long long) base) % v);
        return m * sign;
    }

    bigint &operator*=(const bigint &v) {
        *this = *this * v;
        return *this;
    }

    bigint &operator/=(const bigint &v) {
        *this = *this / v;
        return *this;
    }

    bigint &operator%=(const bigint &v) {
        *this = *this % v;
        return *this;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const {
        return v < *this;
    }

    bool operator<=(const bigint &v) const {
        return !(v < *this);
    }

    bool operator>=(const bigint &v) const {
        return !(*this < v);
    }

    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }

    bool operator!=(const bigint &v) const {
        return *this < v || v < *this;
    }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const {
        return z.empty();
    }

    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const {
        return sign == 1 ? *this : -*this;
    }

    long long longValue() const {
        long long res = 0;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) {
        return b.isZero() ? a : gcd(b, a % b);
    }

    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int) s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int) v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int) cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    bigint operator*(const bigint &v) const {
        if (min(z.size(), v.z.size()) < 150)
            return mul_simple(v);
        bigint res;
        res.sign = sign * v.sign;
        res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
                                convert_base(v.z, base_digits, fft_base_digits), fft_base);
        res.z = convert_base(res.z, fft_base_digits, base_digits);
        res.trim();
        return res;
    }

    bigint mul_simple(const bigint &v) const {
        bigint res;
        res.sign = sign * v.sign;
        res.z.resize(z.size() + v.z.size());
        for (int i = 0; i < z.size(); ++i)
            if (z[i])
                for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
                    long long cur = res.z[i + j] + (long long) z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
                    carry = (int) (cur / base);
                    res.z[i + j] = (int) (cur % base);
                }
        res.trim();
        return res;
    }
};

mt19937 rng(1);

bigint random_bigint(int n) {
    string s;
    for (int i = 0; i < n; i++) {
        s += uniform_int_distribution<int>('0', '9')(rng);
    }
    return bigint(s);
}
struct RationalNumber{
  using I=bigint;
  I a, b;
  RationalNumber(){
    a = 0,b = 1;
  }
  RationalNumber(I p, I q):a(p), b(q){// a / b
    reduction();
  };
  RationalNumber(I p):a(p), b(1){// a / b
  };
  void reduction(){
    I g = gcd(a, b);
    a /= g, b /= g;
    if(b < 0)a *= -1,b *= -1;
  }
  RationalNumber &operator+=(const RationalNumber &x){
    I q = b / gcd(b, x.b) * x.b;
    a = a * (q / b) + x.a * (q / x.b);
    b = q;
    reduction();
    return *this;
  }
  RationalNumber &operator-=(const RationalNumber &x){
    I q = b / gcd(b, x.b) * x.b;
    a = a * (q / b) - x.a * (q / x.b);
    b = q;
    reduction();
    return *this;
  }
  RationalNumber &operator*=(const RationalNumber &x){
    I q1 = gcd(a, x.b), q2 = gcd(b, x.a); 
    a = (a / q1) * (x.a / q2), b = (b / q2) * (x.b / q1); 
    return *this;
  }
  RationalNumber &operator/=(const RationalNumber &x){
    I q1 = gcd(a, x.a), q2 = gcd(b, x.b); 
    a = (a / q1) * (x.b / q2), b = (b / q2) * (x.a / q1); 
    return *this;
  }
  RationalNumber operator+(const RationalNumber &x)const{
    return RationalNumber(*this) += x;
  }
  RationalNumber operator-(const RationalNumber &x)const{
    return RationalNumber(*this) -= x;
  }
  RationalNumber operator*(const RationalNumber &x)const{
    return RationalNumber(*this) *= x;
  }
  RationalNumber operator/(const RationalNumber &x)const{
    return RationalNumber(*this) /= x;
  }
  RationalNumber operator-()const{
    return RationalNumber(-a, b);
  }
  bool operator==(const RationalNumber &x)const{
    return a * x.b == b * x.a;
  };
  bool operator!=(const RationalNumber &x)const{
    return !(*this == x);
  };
  bool operator<(const RationalNumber &x)const{
    return a * x.b < b * x.a;
  }
  bool operator>(const RationalNumber &x)const{
    return a * x.b > b * x.a;
  }
  bool operator<=(const RationalNumber &x)const{
    return *this < x || *this == x;
  }
  bool operator>=(const RationalNumber &x)const{
    return *this > x || *this == x;
  }
  friend ostream &operator<<(ostream &os, RationalNumber x){
    return os << x.a << "/" << x.b;
  }
};
using rat=RationalNumber;
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  ll n,k;cin>>n>>k;k--;
  vector<ll>a(n);
  rep(i,0,n)cin>>a[i];
  vector<rat>b(n),c(n);
  b[0]=bigint(1),c[0]=bigint(0);
  rep(i,1,n-1){
    rat p(a[i-1],a[i+1]+a[i-1]);
    rat q(a[i+1],a[i+1]+a[i-1]);
    b[i]=p*b[i-1]/(rat(bigint(1))-p*c[i-1]);
    c[i]=q/(rat(bigint(1))-p*c[i-1]);
  }
  vector<rat>d(n);
  d[n-1]=bigint(0);
  rrep(i,0,n-1){
    d[i]=b[i]+c[i]*d[i+1];
  }
  if(d[k]==rat(bigint(1)))cout<<0<<endl;
  else cout<<rat(bigint(1))-d[k]<<endl;
  return 0;
}
0