結果
| 問題 |
No.1504 ヌメロニム
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2021-05-08 00:24:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 909 ms / 2,000 ms |
| コード長 | 8,146 bytes |
| コンパイル時間 | 2,360 ms |
| コンパイル使用メモリ | 206,936 KB |
| 最終ジャッジ日時 | 2025-01-21 09:04:02 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 61 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
// const int mod = 1e9 + 7;
const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
template< typename T >
struct Enumeration {
private:
static vector< T > _fact, _finv, _inv;
inline static void expand(size_t sz) {
if(_fact.size() < sz + 1) {
int pre_sz = max(1, (int) _fact.size());
_fact.resize(sz + 1, T(1));
_finv.resize(sz + 1, T(1));
_inv.resize(sz + 1, T(1));
for(int i = pre_sz; i <= sz; i++) {
_fact[i] = _fact[i - 1] * T(i);
}
_finv[sz] = T(1) / _fact[sz];
for(int i = (int) sz - 1; i >= pre_sz; i--) {
_finv[i] = _finv[i + 1] * T(i + 1);
}
for(int i = pre_sz; i <= sz; i++) {
_inv[i] = _finv[i] * _fact[i - 1];
}
}
}
public:
explicit Enumeration(size_t sz = 0) { expand(sz); }
static inline T fact(int k) {
expand(k);
return _fact[k];
}
static inline T finv(int k) {
expand(k);
return _finv[k];
}
static inline T inv(int k) {
expand(k);
return _inv[k];
}
static T P(int n, int r) {
if(r < 0 || n < r) return 0;
return fact(n) * finv(n - r);
}
static T C(int p, int q) {
if(q < 0 || p < q) return 0;
return fact(p) * finv(q) * finv(p - q);
}
static T H(int n, int r) {
if(n < 0 || r < 0) return 0;
return r == 0 ? 1 : C(n + r - 1, r);
}
};
template< typename T >
vector< T > Enumeration< T >::_fact = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_finv = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_inv = vector< T >();
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< Mint > dw, idw;
int max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(root.pow((mod - 1) >> 1) == 1) root += 1;
assert(root.pow(mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for(int i = 0; i < max_base; i++) {
dw[i] = -root.pow((mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = n; m >>= 1;) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector< Mint > &a, bool f = true) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = 1; m < n; m *= 2) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
int main() {
int N;
cin >> N;
string S;
cin >> S;
NumberTheoreticTransformFriendlyModInt< modint > ntt;
vector< modint > coef(N);
auto rec = MFP([&](auto rec, int l, int r) -> void {
if(l + 1 >= r) {
return;
}
int m = (l + r) / 2;
rec(l, m);
rec(m, r);
vector< modint > X(m - l), Y(r - m);
for(int i = l; i < m; i++) {
if(S[i] == 'i') X[m - i - 1] = 1;
}
for(int i = m; i < r; i++) {
if(S[i] == 'n') Y[i - m] = 1;
}
auto Z = ntt.multiply(X, Y);
for(int k = 0; k < Z.size(); k++) {
coef[k] += Z[k];
}
});
rec(0, N);
using E = Enumeration< modint >;
vector< modint > P(N + 1), Q(N + 1);
for(int i = 0; i < N; i++) {
P[i] = E::finv(i);
Q[N - i] = coef[i] * E::fact(i);
}
coef = ntt.multiply(P, Q);
int ans = 0;
for(int i = 0; i <= N - 2; i++) {
ans ^= (coef[N - i] * E::finv(i)).x;
}
cout << ans << "\n";
}
ei1333333