結果

問題 No.1504 ヌメロニム
ユーザー ei1333333ei1333333
提出日時 2021-05-08 00:24:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 906 ms / 2,000 ms
コード長 8,146 bytes
コンパイル時間 2,709 ms
コンパイル使用メモリ 213,460 KB
実行使用メモリ 22,996 KB
最終ジャッジ日時 2024-09-15 12:32:24
合計ジャッジ時間 21,648 ms
ジャッジサーバーID
(参考情報)
judge1 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 6 ms
5,376 KB
testcase_21 AC 4 ms
5,376 KB
testcase_22 AC 6 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 868 ms
22,124 KB
testcase_25 AC 468 ms
14,532 KB
testcase_26 AC 904 ms
22,664 KB
testcase_27 AC 501 ms
15,384 KB
testcase_28 AC 503 ms
15,652 KB
testcase_29 AC 871 ms
22,600 KB
testcase_30 AC 875 ms
22,628 KB
testcase_31 AC 466 ms
14,892 KB
testcase_32 AC 477 ms
15,340 KB
testcase_33 AC 860 ms
22,592 KB
testcase_34 AC 107 ms
6,248 KB
testcase_35 AC 93 ms
5,752 KB
testcase_36 AC 410 ms
12,624 KB
testcase_37 AC 47 ms
5,376 KB
testcase_38 AC 905 ms
22,864 KB
testcase_39 AC 906 ms
22,880 KB
testcase_40 AC 875 ms
22,816 KB
testcase_41 AC 873 ms
22,856 KB
testcase_42 AC 872 ms
22,868 KB
testcase_43 AC 876 ms
22,812 KB
testcase_44 AC 884 ms
22,864 KB
testcase_45 AC 878 ms
22,864 KB
testcase_46 AC 904 ms
22,996 KB
testcase_47 AC 903 ms
22,868 KB
testcase_48 AC 465 ms
14,924 KB
testcase_49 AC 449 ms
14,404 KB
testcase_50 AC 6 ms
5,376 KB
testcase_51 AC 3 ms
5,376 KB
testcase_52 AC 2 ms
5,376 KB
testcase_53 AC 4 ms
5,376 KB
testcase_54 AC 2 ms
5,376 KB
testcase_55 AC 87 ms
5,740 KB
testcase_56 AC 2 ms
5,376 KB
testcase_57 AC 2 ms
5,376 KB
testcase_58 AC 2 ms
5,376 KB
testcase_59 AC 2 ms
5,376 KB
testcase_60 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

using namespace std;
using int64 = long long;
// const int mod = 1e9 + 7;
const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< mod >;

template< typename T >
struct Enumeration {
private:
  static vector< T > _fact, _finv, _inv;

  inline static void expand(size_t sz) {
    if(_fact.size() < sz + 1) {
      int pre_sz = max(1, (int) _fact.size());
      _fact.resize(sz + 1, T(1));
      _finv.resize(sz + 1, T(1));
      _inv.resize(sz + 1, T(1));
      for(int i = pre_sz; i <= sz; i++) {
        _fact[i] = _fact[i - 1] * T(i);
      }
      _finv[sz] = T(1) / _fact[sz];
      for(int i = (int) sz - 1; i >= pre_sz; i--) {
        _finv[i] = _finv[i + 1] * T(i + 1);
      }
      for(int i = pre_sz; i <= sz; i++) {
        _inv[i] = _finv[i] * _fact[i - 1];
      }
    }
  }

public:
  explicit Enumeration(size_t sz = 0) { expand(sz); }

  static inline T fact(int k) {
    expand(k);
    return _fact[k];
  }

  static inline T finv(int k) {
    expand(k);
    return _finv[k];
  }

  static inline T inv(int k) {
    expand(k);
    return _inv[k];
  }

  static T P(int n, int r) {
    if(r < 0 || n < r) return 0;
    return fact(n) * finv(n - r);
  }

  static T C(int p, int q) {
    if(q < 0 || p < q) return 0;
    return fact(p) * finv(q) * finv(p - q);
  }

  static T H(int n, int r) {
    if(n < 0 || r < 0) return 0;
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

template< typename T >
vector< T > Enumeration< T >::_fact = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_finv = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_inv = vector< T >();

template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {

  vector< Mint > dw, idw;
  int max_base;
  Mint root;

  NumberTheoreticTransformFriendlyModInt() {
    const unsigned mod = Mint::get_mod();
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(root.pow((mod - 1) >> 1) == 1) root += 1;
    assert(root.pow(mod - 1) == 1);
    dw.resize(max_base);
    idw.resize(max_base);
    for(int i = 0; i < max_base; i++) {
      dw[i] = -root.pow((mod - 1) >> (i + 2));
      idw[i] = Mint(1) / dw[i];
    }
  }

  void ntt(vector< Mint > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = n; m >>= 1;) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j] * w;
          a[i] = x + y, a[j] = x - y;
        }
        w *= dw[__builtin_ctz(++k)];
      }
    }
  }

  void intt(vector< Mint > &a, bool f = true) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = 1; m < n; m *= 2) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j];
          a[i] = x + y, a[j] = (x - y) * w;
        }
        w *= idw[__builtin_ctz(++k)];
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }

  vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};


int main() {
  int N;
  cin >> N;
  string S;
  cin >> S;
  NumberTheoreticTransformFriendlyModInt< modint > ntt;
  vector< modint > coef(N);
  auto rec = MFP([&](auto rec, int l, int r) -> void {
    if(l + 1 >= r) {
      return;
    }
    int m = (l + r) / 2;
    rec(l, m);
    rec(m, r);
    vector< modint > X(m - l), Y(r - m);
    for(int i = l; i < m; i++) {
      if(S[i] == 'i') X[m - i - 1] = 1;
    }
    for(int i = m; i < r; i++) {
      if(S[i] == 'n') Y[i - m] = 1;
    }
    auto Z = ntt.multiply(X, Y);
    for(int k = 0; k < Z.size(); k++) {
      coef[k] += Z[k];
    }
  });
  rec(0, N);
  using E = Enumeration< modint >;
  vector< modint > P(N + 1), Q(N + 1);
  for(int i = 0; i < N; i++) {
    P[i] = E::finv(i);
    Q[N - i] = coef[i] * E::fact(i);
  }
  coef = ntt.multiply(P, Q);
  int ans = 0;
  for(int i = 0; i <= N - 2; i++) {
    ans ^= (coef[N - i] * E::finv(i)).x;
  }
  cout << ans << "\n";
}
0