結果

問題 No.1504 ヌメロニム
ユーザー uwiuwi
提出日時 2021-05-08 15:27:33
言語 Java21
(openjdk 21)
結果
AC  
実行時間 1,517 ms / 2,000 ms
コード長 24,084 bytes
コンパイル時間 6,198 ms
コンパイル使用メモリ 94,216 KB
実行使用メモリ 141,576 KB
最終ジャッジ日時 2024-09-16 20:19:36
合計ジャッジ時間 41,379 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 103 ms
42,596 KB
testcase_01 AC 107 ms
42,580 KB
testcase_02 AC 107 ms
42,368 KB
testcase_03 AC 108 ms
42,572 KB
testcase_04 AC 108 ms
42,540 KB
testcase_05 AC 106 ms
42,548 KB
testcase_06 AC 106 ms
42,520 KB
testcase_07 AC 106 ms
42,120 KB
testcase_08 AC 106 ms
42,496 KB
testcase_09 AC 105 ms
42,320 KB
testcase_10 AC 107 ms
42,376 KB
testcase_11 AC 106 ms
42,476 KB
testcase_12 AC 111 ms
42,496 KB
testcase_13 AC 105 ms
42,420 KB
testcase_14 AC 107 ms
42,548 KB
testcase_15 AC 106 ms
42,564 KB
testcase_16 AC 106 ms
42,460 KB
testcase_17 AC 106 ms
42,168 KB
testcase_18 AC 107 ms
42,128 KB
testcase_19 AC 106 ms
42,124 KB
testcase_20 AC 169 ms
44,320 KB
testcase_21 AC 130 ms
43,188 KB
testcase_22 AC 165 ms
44,276 KB
testcase_23 AC 107 ms
42,520 KB
testcase_24 AC 1,473 ms
139,496 KB
testcase_25 AC 909 ms
97,836 KB
testcase_26 AC 1,485 ms
141,576 KB
testcase_27 AC 929 ms
99,668 KB
testcase_28 AC 936 ms
99,680 KB
testcase_29 AC 1,212 ms
140,804 KB
testcase_30 AC 1,232 ms
140,736 KB
testcase_31 AC 927 ms
99,000 KB
testcase_32 AC 925 ms
99,560 KB
testcase_33 AC 1,114 ms
140,344 KB
testcase_34 AC 491 ms
57,348 KB
testcase_35 AC 488 ms
56,224 KB
testcase_36 AC 922 ms
80,396 KB
testcase_37 AC 355 ms
53,184 KB
testcase_38 AC 1,504 ms
141,084 KB
testcase_39 AC 1,517 ms
140,892 KB
testcase_40 AC 1,250 ms
141,232 KB
testcase_41 AC 1,236 ms
141,148 KB
testcase_42 AC 1,478 ms
141,064 KB
testcase_43 AC 1,459 ms
141,268 KB
testcase_44 AC 1,109 ms
141,124 KB
testcase_45 AC 1,229 ms
141,076 KB
testcase_46 AC 1,496 ms
141,092 KB
testcase_47 AC 1,500 ms
141,128 KB
testcase_48 AC 937 ms
99,232 KB
testcase_49 AC 918 ms
98,220 KB
testcase_50 AC 171 ms
44,212 KB
testcase_51 AC 132 ms
43,076 KB
testcase_52 AC 107 ms
42,596 KB
testcase_53 AC 132 ms
43,240 KB
testcase_54 AC 108 ms
42,308 KB
testcase_55 AC 476 ms
57,304 KB
testcase_56 AC 106 ms
42,576 KB
testcase_57 AC 107 ms
42,168 KB
testcase_58 AC 108 ms
42,476 KB
testcase_59 AC 108 ms
42,380 KB
testcase_60 AC 109 ms
42,592 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package contest210507;
import java.io.*;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;
import java.util.function.IntUnaryOperator;
import java.util.function.LongUnaryOperator;

public class F {
	InputStream is;
	FastWriter out;

	String INPUT = "";

	public void solve()
	{
		int n = ni();
		char[] s = ns(n);
		long[] is = new long[n];
		long[] ns = new long[n];
		for(int i = 0;i < n;i++){
			if(s[i] == 'i'){
				is[i] = 1;
			}else if(s[i] == 'n'){
				ns[n-1-i] = 1;
			}
		}
		long[] c = NTTCRTFixedStockham.convolute2(is, ns);
		final int mod = 998244353;
		long[] f = new long[n];
		for(int i = 0;i < c.length;i++){
			int len = n-1-i-1;
			if(len < 0)continue;
			f[len] = c[i];
		}
		int[][] fif = enumFIF(500000, mod);
		f = substitute(f, 1, fif, mod);
//		out.println(ans);

		long ans = 0;
		for(long v : f){
			ans ^= v;
		}
		out.println(ans);

		// sum a[i]*(x+t)^i
		// b[i] = sum_j a[j]*x^i*t^(j-i)*C(j,i)
		// b[i] = (x^i/t^i)sum_j a[j]*t^j*C(j,i)
		// b[i] = x^i*sum_j a[j]*t^j*j!/(j-i)!/i!/t^i
	}

	public static int[][] enumFIF(int n, int mod) {
		int[] f = new int[n + 1];
		int[] invf = new int[n + 1];
		f[0] = 1;
		for (int i = 1; i <= n; i++) {
			f[i] = (int) ((long) f[i - 1] * i % mod);
		}
		long a = f[n];
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		invf[n] = (int) (p < 0 ? p + mod : p);
		for (int i = n - 1; i >= 0; i--) {
			invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
		}
		return new int[][]{f, invf};
	}


	 long[] substitute(long[] f, long t, int[][] fif, int mod)
	{
		long[] g = Arrays.copyOf(f, f.length);
		long tt = 1;
		for(int i = 0;i < f.length;i++){
			g[i] = g[i] * tt % mod * fif[0][i] % mod;
			tt = tt * t % mod;
		}
		long[] h = new long[f.length];
		for(int i = 0;i < h.length;i++){
			h[i] = fif[1][h.length-1-i];
		}
		long[] res = mul(g, h);
		long[] ret = new long[f.length];
		tt = 1;
		for(int i = 0;i < f.length;i++) {
			ret[i] = res[h.length-1 + i] * tt % mod * fif[1][i] % mod;
			tt = tt * t % mod;
		}
		return ret;
	}

	public static long[] mul(long[] a, long[] b)
	{
		return Arrays.copyOf(NTTStockham998244353.convolute(a, b), a.length+b.length-1);
	}






	public static long pow(long a, long n, long mod) {
		//		a %= mod;
		long ret = 1;
		int x = 63 - Long.numberOfLeadingZeros(n);
		for (; x >= 0; x--) {
			ret = ret * ret % mod;
			if (n << 63 - x < 0) ret = ret * a % mod;
		}
		return ret;
	}


	public static class NTTCRTFixedStockham {
		public static long[] convolute2(long[] a, long[] b) {
			long[][] fs = new long[][]{
					NTTStockham1012924417.convolute(a, b),
					NTTStockham1004535809.convolute(a, b),
			};

			for(int i = 0;i < fs[0].length;i++){
				long v0 = fs[0][i];
				long v1 = (fs[1][i] - v0) * 753401737 % 1004535809;
				if(v1 < 0)v1 += 1004535809;

				fs[0][i] = v1 * 1012924417 + v0;
			}
			return fs[0];
		}

		public static long[] convolute(long[] a, long[] b, final int mod) {
			long[][] fs = new long[][]{
					NTTStockham1012924417.convolute(a, b),
					NTTStockham1004535809.convolute(a, b),
					NTTStockham998244353.convolute(a, b)
			};

			for(int i = 0;i < fs[0].length;i++){
				long v0 = fs[0][i];
				long v1 = (fs[1][i] - v0) * 753401737 % 1004535809;
				if(v1 < 0)v1 += 1004535809;
				long temp = (v1 * 1012924417 + v0) % 998244353;
				long v2 = (fs[2][i] - temp) * 332758907 % 998244353;
				if(v2 < 0)v2 += 998244353;

				long ret = v2;
				ret = (ret * 1004535809 + v1) % mod;
				ret = (ret * 1012924417 + v0) % mod;
				fs[0][i] = ret;
			}
			return fs[0];
		}

		public static long[] convolute3(long[] a, long[] b) {
			long[][] fs = new long[][]{
					NTTStockham1012924417.convolute(a, b),
					NTTStockham1004535809.convolute(a, b),
					NTTStockham998244353.convolute(a, b)
			};

			for(int i = 0;i < fs[0].length;i++){
				long v0 = fs[0][i];
				long v1 = (fs[1][i] - v0) * 753401737 % 1004535809;
				if(v1 < 0)v1 += 1004535809;
				long temp = (v1 * 1012924417 + v0) % 998244353;
				long v2 = (fs[2][i] - temp) * 332758907 % 998244353;
				if(v2 < 0)v2 += 998244353;

				long ret = v2;
				ret = (ret * 1004535809 + v1);
				ret = (ret * 1012924417 + v0);
				fs[0][i] = ret;
			}
			return fs[0];
		}
	}

	public static class NTTStockham998244353 {
		private static final int P = 998244353, mod = P, G = 3;
		private static long[] wps;

		public static long[] convolute(long[] a, long[] b)
		{
			int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);

			wps = new long[m];
			long unit = pow(G, (P-1)/m);
			wps[0] = 1;
			for(int p = 1;p < m;p++) {
				wps[p] = wps[p-1] * unit % mod;
			}

			long[] fa = go(a, m, false);
			long[] fb = a == b ? fa : go(b, m, false);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i] % mod;
			}
			fa = go(fa, m, true);
			for(int i = 1, j = m-1;i < j;i++,j--) {
				long d = fa[i]; fa[i] = fa[j]; fa[j] = d;
			}
			return fa;
		}

		private static void fft(long[] X, long[] Y)
		{
			int s = 1;
			boolean eo = false;
			for(int n = X.length;n >= 4;n /= 2) {
				int m = n/2;
				for(int p = 0;p < m;p++) {
					long wp = wps[s*p];
					long wk = (wp<<32)/P;
					for(int q = 0;q < s;q++) {
						long a = X[q + s*(p+0)];
						long b = X[q + s*(p+m)];
						long ndsts = a + b;
						if(ndsts >= 2*P)ndsts -= 2*P;
						long T = a - b + 2*P;
						long Q = wk*T>>>32;
						Y[q + s*(2*p+0)] = ndsts;
						Y[q + s*(2*p+1)] = wp*T-Q*P&(1L<<32)-1;
					}
				}
				s *= 2;
				eo = !eo;
				long[] D = X; X = Y; Y = D;
			}
			long[] z = eo ? Y : X;
			for(int q = 0;q < s;q++) {
				long a = X[q + 0];
				long b = X[q + s];
				z[q+0] = (a+b) % P;
				z[q+s] = (a-b+2*P) % P;
			}
		}

		//	private static void fft(long[] X, long[] Y)
		//	{
		//		int s = 1;
		//		boolean eo = false;
		//		for(int n = X.length;n >= 4;n /= 2) {
		//			int m = n/2;
		//			for(int p = 0;p < m;p++) {
		//				long wp = wps[s*p];
		//				for(int q = 0;q < s;q++) {
		//					long a = X[q + s*(p+0)];
		//					long b = X[q + s*(p+m)];
		//					Y[q + s*(2*p+0)] = (a+b) % P;
		//					Y[q + s*(2*p+1)] = (a-b+P) * wp % P;
		//				}
		//			}
		//			s *= 2;
		//			eo = !eo;
		//			long[] D = X; X = Y; Y = D;
		//		}
		//		long[] z = eo ? Y : X;
		//		for(int q = 0;q < s;q++) {
		//			long a = X[q + 0];
		//			long b = X[q + s];
		//			z[q+0] = (a+b) % P;
		//			z[q+s] = (a-b+P) % P;
		//		}
		//	}

		private static long[] go(long[] src, int n, boolean inverse)
		{
			long[] dst = Arrays.copyOf(src, n);
			fft(dst, new long[n]);
			if(inverse){
				long in = invl(n);
				for(int i = 0;i < n;i++){
					dst[i] = dst[i] * in % mod;
				}
			}

			return dst;
		}

		private static long pow(long a, long n) {
			//		a %= mod;
			long ret = 1;
			int x = 63 - Long.numberOfLeadingZeros(n);
			for (; x >= 0; x--) {
				ret = ret*ret % mod;
				if (n<<~x<0)ret = ret*a%mod;
			}
			return ret;
		}

		private static long invl(long a) {
			long b = mod;
			long p = 1, q = 0;
			while (b > 0) {
				long c = a / b;
				long d;
				d = a;
				a = b;
				b = d % b;
				d = p;
				p = q;
				q = d - c * q;
			}
			return p < 0 ? p + mod : p;
		}
	}

	public static class NTTStockham1012924417 {
		private static final int P = 1012924417, mod = P, G = 5;
		private static long[] wps;

		public static long[] convolute(long[] a, long[] b)
		{
			int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);

			wps = new long[m];
			long unit = pow(G, (P-1)/m);
			wps[0] = 1;
			for(int p = 1;p < m;p++) {
				wps[p] = wps[p-1] * unit % mod;
			}

			long[] fa = go(a, m, false);
			long[] fb = a == b ? fa : go(b, m, false);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i] % mod;
			}
			fa = go(fa, m, true);
			for(int i = 1, j = m-1;i < j;i++,j--) {
				long d = fa[i]; fa[i] = fa[j]; fa[j] = d;
			}
			return fa;
		}


		private static void fft(long[] X, long[] Y)
		{
			int s = 1;
			boolean eo = false;
			for(int n = X.length;n >= 4;n /= 2) {
				int m = n/2;
				for(int p = 0;p < m;p++) {
					long wp = wps[s*p];
					long wk = (wp<<32)/P;
					for(int q = 0;q < s;q++) {
						long a = X[q + s*(p+0)];
						long b = X[q + s*(p+m)];
						long ndsts = a + b;
						if(ndsts >= 2*P)ndsts -= 2*P;
						long T = a - b + 2*P;
						long Q = wk*T>>>32;
						Y[q + s*(2*p+0)] = ndsts;
						Y[q + s*(2*p+1)] = wp*T-Q*P&(1L<<32)-1;
					}
				}
				s *= 2;
				eo = !eo;
				long[] D = X; X = Y; Y = D;
			}
			long[] z = eo ? Y : X;
			for(int q = 0;q < s;q++) {
				long a = X[q + 0];
				long b = X[q + s];
				z[q+0] = (a+b) % P;
				z[q+s] = (a-b+2*P) % P;
			}
		}

		//	private static void fft(long[] X, long[] Y)
		//	{
		//		int s = 1;
		//		boolean eo = false;
		//		for(int n = X.length;n >= 4;n /= 2) {
		//			int m = n/2;
		//			for(int p = 0;p < m;p++) {
		//				long wp = wps[s*p];
		//				for(int q = 0;q < s;q++) {
		//					long a = X[q + s*(p+0)];
		//					long b = X[q + s*(p+m)];
		//					Y[q + s*(2*p+0)] = (a+b) % P;
		//					Y[q + s*(2*p+1)] = (a-b+P) * wp % P;
		//				}
		//			}
		//			s *= 2;
		//			eo = !eo;
		//			long[] D = X; X = Y; Y = D;
		//		}
		//		long[] z = eo ? Y : X;
		//		for(int q = 0;q < s;q++) {
		//			long a = X[q + 0];
		//			long b = X[q + s];
		//			z[q+0] = (a+b) % P;
		//			z[q+s] = (a-b+P) % P;
		//		}
		//	}

		private static long[] go(long[] src, int n, boolean inverse)
		{
			long[] dst = Arrays.copyOf(src, n);
			fft(dst, new long[n]);
			if(inverse){
				long in = invl(n);
				for(int i = 0;i < n;i++){
					dst[i] = dst[i] * in % mod;
				}
			}

			return dst;
		}

		private static long pow(long a, long n) {
			//		a %= mod;
			long ret = 1;
			int x = 63 - Long.numberOfLeadingZeros(n);
			for (; x >= 0; x--) {
				ret = ret*ret % mod;
				if (n<<~x<0)ret = ret*a%mod;
			}
			return ret;
		}

		private static long invl(long a) {
			long b = mod;
			long p = 1, q = 0;
			while (b > 0) {
				long c = a / b;
				long d;
				d = a;
				a = b;
				b = d % b;
				d = p;
				p = q;
				q = d - c * q;
			}
			return p < 0 ? p + mod : p;
		}
	}

	public static class NTTStockham1004535809 {
		private static final int P = 1004535809, mod = P, G = 3;
		private static long[] wps;

		public static long[] convolute(long[] a, long[] b)
		{
			int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);

			wps = new long[m];
			long unit = pow(G, (P-1)/m);
			wps[0] = 1;
			for(int p = 1;p < m;p++) {
				wps[p] = wps[p-1] * unit % mod;
			}

			long[] fa = go(a, m, false);
			long[] fb = a == b ? fa : go(b, m, false);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i] % mod;
			}
			fa = go(fa, m, true);
			for(int i = 1, j = m-1;i < j;i++,j--) {
				long d = fa[i]; fa[i] = fa[j]; fa[j] = d;
			}
			return fa;
		}


		private static void fft(long[] X, long[] Y)
		{
			int s = 1;
			boolean eo = false;
			for(int n = X.length;n >= 4;n /= 2) {
				int m = n/2;
				for(int p = 0;p < m;p++) {
					long wp = wps[s*p];
					long wk = (wp<<32)/P;
					for(int q = 0;q < s;q++) {
						long a = X[q + s*(p+0)];
						long b = X[q + s*(p+m)];
						long ndsts = a + b;
						if(ndsts >= 2*P)ndsts -= 2*P;
						long T = a - b + 2*P;
						long Q = wk*T>>>32;
						Y[q + s*(2*p+0)] = ndsts;
						Y[q + s*(2*p+1)] = wp*T-Q*P&(1L<<32)-1;
					}
				}
				s *= 2;
				eo = !eo;
				long[] D = X; X = Y; Y = D;
			}
			long[] z = eo ? Y : X;
			for(int q = 0;q < s;q++) {
				long a = X[q + 0];
				long b = X[q + s];
				z[q+0] = (a+b) % P;
				z[q+s] = (a-b+2*P) % P;
			}
		}

		//	private static void fft(long[] X, long[] Y)
		//	{
		//		int s = 1;
		//		boolean eo = false;
		//		for(int n = X.length;n >= 4;n /= 2) {
		//			int m = n/2;
		//			for(int p = 0;p < m;p++) {
		//				long wp = wps[s*p];
		//				for(int q = 0;q < s;q++) {
		//					long a = X[q + s*(p+0)];
		//					long b = X[q + s*(p+m)];
		//					Y[q + s*(2*p+0)] = (a+b) % P;
		//					Y[q + s*(2*p+1)] = (a-b+P) * wp % P;
		//				}
		//			}
		//			s *= 2;
		//			eo = !eo;
		//			long[] D = X; X = Y; Y = D;
		//		}
		//		long[] z = eo ? Y : X;
		//		for(int q = 0;q < s;q++) {
		//			long a = X[q + 0];
		//			long b = X[q + s];
		//			z[q+0] = (a+b) % P;
		//			z[q+s] = (a-b+P) % P;
		//		}
		//	}

		private static long[] go(long[] src, int n, boolean inverse)
		{
			long[] dst = Arrays.copyOf(src, n);
			fft(dst, new long[n]);
			if(inverse){
				long in = invl(n);
				for(int i = 0;i < n;i++){
					dst[i] = dst[i] * in % mod;
				}
			}

			return dst;
		}

		private static long pow(long a, long n) {
			//		a %= mod;
			long ret = 1;
			int x = 63 - Long.numberOfLeadingZeros(n);
			for (; x >= 0; x--) {
				ret = ret*ret % mod;
				if (n<<~x<0)ret = ret*a%mod;
			}
			return ret;
		}

		private static long invl(long a) {
			long b = mod;
			long p = 1, q = 0;
			while (b > 0) {
				long c = a / b;
				long d;
				d = a;
				a = b;
				b = d % b;
				d = p;
				p = q;
				q = d - c * q;
			}
			return p < 0 ? p + mod : p;
		}
	}




	public static void main(String[] args) {
		new F().run();
	}

	public void run()
	{
		long S = System.currentTimeMillis();
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new FastWriter(System.out);

		solve();
		out.flush();
		long G = System.currentTimeMillis();
		tr(G-S+"ms");
		//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
		//			@Override
		//			public void run() {
		//				long s = System.currentTimeMillis();
		//				solve();
		//				out.flush();
		//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
		//			}
		//		};
		//		t.start();
		//		t.join();
	}

	private boolean eof()
	{
		if(lenbuf == -1)return true;
		int lptr = ptrbuf;
		while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;

		try {
			is.mark(1000);
			while(true){
				int b = is.read();
				if(b == -1){
					is.reset();
					return true;
				}else if(!isSpaceChar(b)){
					is.reset();
					return false;
				}
			}
		} catch (IOException e) {
			return true;
		}
	}

	private final byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;

	private int readByte()
	{
		if(lenbuf == -1)throw new InputMismatchException();
		if(ptrbuf >= lenbuf){
			ptrbuf = 0;
			try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
			if(lenbuf <= 0)return -1;
		}
		return inbuf[ptrbuf++];
	}

	private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
	//	private boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
	private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }

	private double nd() { return Double.parseDouble(ns()); }
	private char nc() { return (char)skip(); }

	private String ns()
	{
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while(!(isSpaceChar(b))){
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}

	private char[] ns(int n)
	{
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while(p < n && !(isSpaceChar(b))){
			buf[p++] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}

	private char[][] nm(int n, int m)
	{
		char[][] map = new char[n][];
		for(int i = 0;i < n;i++)map[i] = ns(m);
		return map;
	}

	private int[] na(int n)
	{
		int[] a = new int[n];
		for(int i = 0;i < n;i++)a[i] = ni();
		return a;
	}

	private long[] nal(int n)
	{
		long[] a = new long[n];
		for(int i = 0;i < n;i++)a[i] = nl();
		return a;
	}

	private int ni()
	{
		int num = 0, b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}

		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}

	private long nl()
	{
		long num = 0;
		int b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}

		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}

	public static class FastWriter
	{
		private static final int BUF_SIZE = 1<<13;
		private final byte[] buf = new byte[BUF_SIZE];
		private final OutputStream out;
		private int ptr = 0;

		private FastWriter(){out = null;}

		public FastWriter(OutputStream os)
		{
			this.out = os;
		}

		public FastWriter(String path)
		{
			try {
				this.out = new FileOutputStream(path);
			} catch (FileNotFoundException e) {
				throw new RuntimeException("FastWriter");
			}
		}

		public FastWriter write(byte b)
		{
			buf[ptr++] = b;
			if(ptr == BUF_SIZE)innerflush();
			return this;
		}

		public FastWriter write(char c)
		{
			return write((byte)c);
		}

		public FastWriter write(char[] s)
		{
			for(char c : s){
				buf[ptr++] = (byte)c;
				if(ptr == BUF_SIZE)innerflush();
			}
			return this;
		}

		public FastWriter write(String s)
		{
			s.chars().forEach(c -> {
				buf[ptr++] = (byte)c;
				if(ptr == BUF_SIZE)innerflush();
			});
			return this;
		}

		private static int countDigits(int l) {
			if (l >= 1000000000) return 10;
			if (l >= 100000000) return 9;
			if (l >= 10000000) return 8;
			if (l >= 1000000) return 7;
			if (l >= 100000) return 6;
			if (l >= 10000) return 5;
			if (l >= 1000) return 4;
			if (l >= 100) return 3;
			if (l >= 10) return 2;
			return 1;
		}

		public FastWriter write(int x)
		{
			if(x == Integer.MIN_VALUE){
				return write((long)x);
			}
			if(ptr + 12 >= BUF_SIZE)innerflush();
			if(x < 0){
				write((byte)'-');
				x = -x;
			}
			int d = countDigits(x);
			for(int i = ptr + d - 1;i >= ptr;i--){
				buf[i] = (byte)('0'+x%10);
				x /= 10;
			}
			ptr += d;
			return this;
		}

		private static int countDigits(long l) {
			if (l >= 1000000000000000000L) return 19;
			if (l >= 100000000000000000L) return 18;
			if (l >= 10000000000000000L) return 17;
			if (l >= 1000000000000000L) return 16;
			if (l >= 100000000000000L) return 15;
			if (l >= 10000000000000L) return 14;
			if (l >= 1000000000000L) return 13;
			if (l >= 100000000000L) return 12;
			if (l >= 10000000000L) return 11;
			if (l >= 1000000000L) return 10;
			if (l >= 100000000L) return 9;
			if (l >= 10000000L) return 8;
			if (l >= 1000000L) return 7;
			if (l >= 100000L) return 6;
			if (l >= 10000L) return 5;
			if (l >= 1000L) return 4;
			if (l >= 100L) return 3;
			if (l >= 10L) return 2;
			return 1;
		}

		public FastWriter write(long x)
		{
			if(x == Long.MIN_VALUE){
				return write("" + x);
			}
			if(ptr + 21 >= BUF_SIZE)innerflush();
			if(x < 0){
				write((byte)'-');
				x = -x;
			}
			int d = countDigits(x);
			for(int i = ptr + d - 1;i >= ptr;i--){
				buf[i] = (byte)('0'+x%10);
				x /= 10;
			}
			ptr += d;
			return this;
		}

		public FastWriter write(double x, int precision)
		{
			if(x < 0){
				write('-');
				x = -x;
			}
			x += Math.pow(10, -precision)/2;
			//		if(x < 0){ x = 0; }
			write((long)x).write(".");
			x -= (long)x;
			for(int i = 0;i < precision;i++){
				x *= 10;
				write((char)('0'+(int)x));
				x -= (int)x;
			}
			return this;
		}

		public FastWriter writeln(char c){ return write(c).writeln(); }
		public FastWriter writeln(int x){ return write(x).writeln(); }
		public FastWriter writeln(long x){ return write(x).writeln(); }
		public FastWriter writeln(double x, int precision){ return write(x, precision).writeln(); }

		public FastWriter write(int... xs)
		{
			boolean first = true;
			for(int x : xs) {
				if (!first) write(' ');
				first = false;
				write(x);
			}
			return this;
		}

		public FastWriter write(long... xs)
		{
			boolean first = true;
			for(long x : xs) {
				if (!first) write(' ');
				first = false;
				write(x);
			}
			return this;
		}

		public FastWriter write(IntUnaryOperator f, int... xs)
		{
			boolean first = true;
			for(int x : xs) {
				if (!first) write(' ');
				first = false;
				write(f.applyAsInt(x));
			}
			return this;
		}

		public FastWriter write(LongUnaryOperator f, long... xs)
		{
			boolean first = true;
			for(long x : xs) {
				if (!first) write(' ');
				first = false;
				write(f.applyAsLong(x));
			}
			return this;
		}

		public FastWriter writeln()
		{
			return write((byte)'\n');
		}

		public FastWriter writeln(int... xs) { return write(xs).writeln(); }
		public FastWriter writeln(long... xs) { return write(xs).writeln(); }
		public FastWriter writeln(IntUnaryOperator f, int... xs) { return write(f, xs).writeln(); }
		public FastWriter writeln(LongUnaryOperator f, long... xs) { return write(f, xs).writeln(); }
		public FastWriter writeln(char[] line) { return write(line).writeln(); }
		public FastWriter writeln(char[]... map) { for(char[] line : map)write(line).writeln();return this; }
		public FastWriter writeln(String s) { return write(s).writeln(); }

		private void innerflush()
		{
			try {
				out.write(buf, 0, ptr);
				ptr = 0;
			} catch (IOException e) {
				throw new RuntimeException("innerflush");
			}
		}

		public void flush()
		{
			innerflush();
			try {
				out.flush();
			} catch (IOException e) {
				throw new RuntimeException("flush");
			}
		}

		public FastWriter print(byte b) { return write(b); }
		public FastWriter print(char c) { return write(c); }
		public FastWriter print(char[] s) { return write(s); }
		public FastWriter print(String s) { return write(s); }
		public FastWriter print(int x) { return write(x); }
		public FastWriter print(long x) { return write(x); }
		public FastWriter print(double x, int precision) { return write(x, precision); }
		public FastWriter println(char c){ return writeln(c); }
		public FastWriter println(int x){ return writeln(x); }
		public FastWriter println(long x){ return writeln(x); }
		public FastWriter println(double x, int precision){ return writeln(x, precision); }
		public FastWriter print(int... xs) { return write(xs); }
		public FastWriter print(long... xs) { return write(xs); }
		public FastWriter print(IntUnaryOperator f, int... xs) { return write(f, xs); }
		public FastWriter print(LongUnaryOperator f, long... xs) { return write(f, xs); }
		public FastWriter println(int... xs) { return writeln(xs); }
		public FastWriter println(long... xs) { return writeln(xs); }
		public FastWriter println(IntUnaryOperator f, int... xs) { return writeln(f, xs); }
		public FastWriter println(LongUnaryOperator f, long... xs) { return writeln(f, xs); }
		public FastWriter println(char[] line) { return writeln(line); }
		public FastWriter println(char[]... map) { return writeln(map); }
		public FastWriter println(String s) { return writeln(s); }
		public FastWriter println() { return writeln(); }
	}

	public static void trnz(int... o)
	{
		for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
		System.out.println();
	}

	// print ids which are 1
	public static void trt(long... o)
	{
		Queue<Integer> stands = new ArrayDeque<>();
		for(int i = 0;i < o.length;i++){
			for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
		}
		System.out.println(stands);
	}

	public static void tf(boolean... r)
	{
		for(boolean x : r)System.out.print(x?'#':'.');
		System.out.println();
	}

	public static void tf(boolean[]... b)
	{
		for(boolean[] r : b) {
			for(boolean x : r)System.out.print(x?'#':'.');
			System.out.println();
		}
		System.out.println();
	}

	public void tf(long[]... b)
	{
		if(INPUT.length() != 0) {
			for (long[] r : b) {
				for (long x : r) {
					for (int i = 0; i < 64; i++) {
						System.out.print(x << ~i < 0 ? '#' : '.');
					}
				}
				System.out.println();
			}
			System.out.println();
		}
	}

	public void tf(long... b)
	{
		if(INPUT.length() != 0) {
			for (long x : b) {
				for (int i = 0; i < 64; i++) {
					System.out.print(x << ~i < 0 ? '#' : '.');
				}
			}
			System.out.println();
		}
	}

	private void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
0