結果
| 問題 | No.1099 Range Square Sum |
| コンテスト | |
| ユーザー |
convexineq
|
| 提出日時 | 2021-05-11 06:25:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 6,245 bytes |
| コンパイル時間 | 298 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 281,788 KB |
| 最終ジャッジ日時 | 2024-09-21 12:08:08 |
| 合計ジャッジ時間 | 21,200 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 25 TLE * 5 |
ソースコード
class LazySegmentTree:
#seg = LazySegmentTree(op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None)
def __init__(self, op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None):
# それぞれ Xの演算, 単位元, f(x), f\circ g, Xの恒等変換
# M が X に作用する
#__slots__ = ["op_X", "e_X", "mapping","compose","id_M","N","log","N0","data","lazy"]
self.e_X = e_X; self.op_X = op_X; self.mapping = mapping; self.compose = composision_of_Aut_X; self.id_M = id_of_Aut_X
self.N = N
self.log = (N-1).bit_length()
self.N0 = 1<<self.log
self.data = [e_X]*(2*self.N0)
self.lazy = [self.id_M]*self.N0
if array is not None:
assert N == len(array)
self.data[self.N0:self.N0+self.N] = array
for i in range(self.N0-1,0,-1): self.update(i)
# 1点更新
def point_set(self, p, x):
p += self.N0
for i in range(self.log, 0,-1):
self.push(p>>i)
self.data[p] = x
for i in range(1, self.log + 1):
self.update(p>>i)
# 1点取得
def point_get(self, p):
p += self.N0
for i in range(self.log, 0, -1):
self.push(p>>i)
return self.data[p]
# 半開区間[L,R)をopでまとめる
def prod(self, l, r):
if l == r: return self.e_X
l += self.N0
r += self.N0
for i in range(self.log, 0, -1):
if (l>>i)<<i != l:
self.push(l>>i)
if (r>>i)<<i != r:
self.push(r>>i)
sml = smr = self.e_X
while l < r:
if l & 1:
sml = self.op_X(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op_X(self.data[r], smr)
l >>= 1
r >>= 1
return self.op_X(sml, smr)
# 全体をopでまとめる
def all_prod(self): return self.data[1]
# 1点作用
def apply_point(self, p, f):
p += self.N0
for i in range(self.log, 0, -1):
self.push(p>>i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
self.update(p>>i)
# 区間作用
def apply(self, l, r, f):
if l == r: return
l += self.N0
r += self.N0
for i in range(self.log, 0, -1):
if (l>>i)<<i != l:
self.push(l>>i)
if (r>>i)<<i != r:
self.push((r-1)>>i)
l2, r2 = l, r
while l < r:
if l & 1:
self.all_apply(l, f)
l += 1
if r & 1:
r -= 1
self.all_apply(r, f)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if (l>>i)<<i != l:
self.update(l>>i)
if (r>>i)<<i != r:
self.update((r-1)>>i)
"""
始点 l を固定
f(x_l*...*x_{r-1}) が True になる最大の r
つまり TTTTFFFF となるとき、F となる最小の添え字
存在しない場合 n が返る
f(e_M) = True でないと壊れる
"""
def max_right(self, l, g):
if l == self.N: return self.N
l += self.N0
for i in range(self.log, 0, -1): self.push(l>>i)
sm = self.e_X
while True:
while l&1 == 0:
l >>= 1
if not g(self.op_X(sm, self.data[l])):
while l < self.N0:
self.push(l)
l *= 2
if g(self.op_X(sm, self.data[l])):
sm = self.op_X(sm, self.data[l])
l += 1
return l - self.N0
sm = self.op_X(sm, self.data[l])
l += 1
if l&-l == l: break
return self.N
"""
終点 r を固定
f(x_l*...*x_{r-1}) が True になる最小の l
つまり FFFFTTTT となるとき、T となる最小の添え字
存在しない場合 r が返る
f(e_M) = True でないと壊れる
"""
def min_left(self, r, g):
if r == 0: return 0
r += self.N0
for i in range(self.log, 0, -1): self.push((r-1)>>i)
sm = self.e_X
while True:
r -= 1
while r>1 and r&1:
r >>= 1
if not g(self.op_X(self.data[r], sm)):
while r < self.N0:
self.push(r)
r = 2*r + 1
if g(self.op_X(self.data[r], sm)):
sm = self.op_X(self.data[r], sm)
r -= 1
return r + 1 - self.N0
sm = self.op_X(self.data[r], sm)
if r&-r == r: break
return 0
# 以下内部関数
def update(self, k):
self.data[k] = self.op_X(self.data[2*k], self.data[2*k+1])
def all_apply(self, k, f):
self.data[k] = self.mapping(f, self.data[k])
if k < self.N0:
self.lazy[k] = self.compose(f, self.lazy[k])
def push(self, k): #propagate と同じ
if self.lazy[k] is self.id_M: return
self.data[2*k ] = self.mapping(self.lazy[k], self.data[2*k])
self.data[2*k+1] = self.mapping(self.lazy[k], self.data[2*k+1])
if 2*k < self.N0:
self.lazy[2*k] = self.compose(self.lazy[k], self.lazy[2*k])
self.lazy[2*k+1] = self.compose(self.lazy[k], self.lazy[2*k+1])
self.lazy[k] = self.id_M
def op_X(X,Y):
return(X[0]+Y[0],X[1]+Y[1],X[2]+Y[2])
e_X = (0,0,0)
def mapping(v,X):
a,b,d = X
return (a+v*d, b+v*(2*a+v*d), d)
def composision_of_Aut_X(v,w):
return v+w
id_of_Aut_X = 0
import sys
readline = sys.stdin.readline
n = int(readline())
*a, = map(int,readline().split())
array = [(ai,ai*ai,1) for ai in a]
seg = LazySegmentTree(op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, n, array)
Q = int(readline())
for _ in range(Q):
v,*q = map(int,readline().split())
if v==1:
l,r,x = q
seg.apply(l-1,r,x)
else:
l,r = q
print(seg.prod(l-1,r)[1])
convexineq