結果

問題 No.1460 Max of Min
ユーザー hitonanodehitonanode
提出日時 2021-05-13 16:38:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 17,076 bytes
コンパイル時間 3,195 ms
コンパイル使用メモリ 184,620 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-25 05:24:25
合計ジャッジ時間 10,345 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 153 ms
6,944 KB
testcase_07 AC 148 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 139 ms
6,940 KB
testcase_11 AC 151 ms
6,944 KB
testcase_12 AC 34 ms
6,940 KB
testcase_13 RE -
testcase_14 AC 71 ms
6,940 KB
testcase_15 AC 29 ms
6,940 KB
testcase_16 AC 61 ms
6,944 KB
testcase_17 AC 64 ms
6,940 KB
testcase_18 RE -
testcase_19 RE -
testcase_20 AC 10 ms
6,944 KB
testcase_21 AC 15 ms
6,940 KB
testcase_22 AC 56 ms
6,940 KB
testcase_23 AC 7 ms
6,940 KB
testcase_24 AC 61 ms
6,944 KB
testcase_25 AC 5 ms
6,944 KB
testcase_26 AC 80 ms
6,944 KB
testcase_27 AC 33 ms
6,940 KB
testcase_28 AC 17 ms
6,944 KB
testcase_29 AC 76 ms
6,944 KB
testcase_30 AC 69 ms
6,944 KB
testcase_31 AC 49 ms
6,944 KB
testcase_32 AC 35 ms
6,940 KB
testcase_33 AC 25 ms
6,944 KB
testcase_34 AC 27 ms
6,944 KB
testcase_35 AC 16 ms
6,940 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 33 ms
6,948 KB
testcase_38 AC 31 ms
6,940 KB
testcase_39 AC 25 ms
6,944 KB
testcase_40 AC 18 ms
6,940 KB
testcase_41 AC 17 ms
6,940 KB
testcase_42 AC 14 ms
6,940 KB
testcase_43 AC 41 ms
6,940 KB
testcase_44 AC 48 ms
6,940 KB
testcase_45 AC 7 ms
6,940 KB
testcase_46 AC 31 ms
6,940 KB
testcase_47 AC 38 ms
6,940 KB
testcase_48 AC 49 ms
6,944 KB
testcase_49 AC 46 ms
6,940 KB
testcase_50 AC 7 ms
6,940 KB
testcase_51 AC 46 ms
6,940 KB
testcase_52 AC 18 ms
6,940 KB
testcase_53 AC 34 ms
6,944 KB
testcase_54 AC 34 ms
6,944 KB
testcase_55 AC 54 ms
6,940 KB
testcase_56 AC 31 ms
6,944 KB
testcase_57 AC 44 ms
6,940 KB
testcase_58 AC 152 ms
6,940 KB
testcase_59 AC 39 ms
6,940 KB
testcase_60 AC 44 ms
6,944 KB
testcase_61 AC 34 ms
6,940 KB
testcase_62 AC 34 ms
6,940 KB
testcase_63 AC 2 ms
6,940 KB
testcase_64 AC 2 ms
6,940 KB
testcase_65 AC 54 ms
6,944 KB
testcase_66 AC 34 ms
6,948 KB
testcase_67 AC 32 ms
6,940 KB
testcase_68 AC 44 ms
6,944 KB
testcase_69 RE -
testcase_70 AC 37 ms
6,944 KB
testcase_71 AC 47 ms
6,940 KB
testcase_72 AC 33 ms
6,944 KB
testcase_73 AC 36 ms
6,940 KB
testcase_74 AC 32 ms
6,940 KB
testcase_75 AC 31 ms
6,940 KB
testcase_76 AC 32 ms
6,940 KB
testcase_77 AC 28 ms
6,944 KB
testcase_78 AC 31 ms
6,944 KB
testcase_79 AC 29 ms
6,944 KB
testcase_80 AC 32 ms
6,944 KB
testcase_81 AC 30 ms
6,940 KB
testcase_82 AC 31 ms
6,940 KB
testcase_83 AC 32 ms
6,940 KB
testcase_84 AC 156 ms
6,940 KB
testcase_85 AC 155 ms
6,940 KB
testcase_86 AC 151 ms
6,940 KB
testcase_87 AC 155 ms
6,948 KB
testcase_88 AC 149 ms
6,940 KB
testcase_89 AC 156 ms
6,944 KB
testcase_90 AC 156 ms
6,940 KB
testcase_91 AC 156 ms
6,940 KB
testcase_92 AC 153 ms
6,940 KB
testcase_93 AC 153 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#else
#define dbg(x) (x)
#endif

template <int mod> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int get_mod() { return mod; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = mod - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < mod; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((mod - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    MDCONST ModInt() : val(0) {}
    MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % mod + mod); }
    MDCONST explicit operator bool() const { return val != 0; }
    MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
    MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
    MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
    MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
    MDCONST bool operator==(const ModInt &x) const { return val == x.val; }
    MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }
    MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }
    MDCONST ModInt pow(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod, n /= 2;
        }
        return ans;
    }

    static std::vector<long long> facs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N <= l0) return;
        facs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod;
        long long facinv = ModInt(facs.back()).pow(mod - 2).val;
        for (int i = N - 1; i >= l0; i--) {
            invs[i] = facinv * facs[i - 1] % mod;
            facinv = facinv * i % mod;
        }
    }
    MDCONST lint inv() const {
        if (this->val < std::min(mod >> 1, 1 << 21)) {
            while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val];
        } else {
            return this->pow(mod - 2).val;
        }
    }
    MDCONST ModInt fac() const {
        while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val];
    }

    MDCONST ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                               : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const {
        return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac());
    }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (mod == 2) return val;
        if (pow((mod - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((mod - 1) / 2) == 1) b += 1;
        int e = 0, m = mod - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, mod - x.val));
    }
};
template <int mod> std::vector<long long> ModInt<mod>::facs = {1};
template <int mod> std::vector<long long> ModInt<mod>::invs = {0};
using mint = ModInt<998244353>;

// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner = false);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
    int n = a.size();
    if (n == 1) return;
    static const int mod = MODINT::get_mod();
    static const MODINT root = MODINT::get_primitive_root();
    assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);

    static std::vector<MODINT> w{1}, iw{1};
    for (int m = w.size(); m < n / 2; m *= 2) {
        MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
        w.resize(m * 2), iw.resize(m * 2);
        for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
    }

    if (!is_inverse) {
        for (int m = n; m >>= 1;) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m] * w[k];
                    a[i] = x + y, a[i + m] = x - y;
                }
            }
        }
    } else {
        for (int m = 1; m < n; m *= 2) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m];
                    a[i] = x + y, a[i + m] = (x - y) * iw[k];
                }
            }
        }
        int n_inv = MODINT(n).inv();
        for (auto &v : a) v *= n_inv;
    }
}
template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    std::vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    ntt(ap, false);
    if (a == b)
        bp = ap;
    else
        ntt(bp, false);
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
    using mint2 = ModInt<nttprimes[2]>;
    static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
    static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv();
    static const long long m01_inv_m2 = mint2(m01).inv();

    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
    return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val) % mod;
}
template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        std::vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::get_mod();
    if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
        a.resize(sz), b.resize(sz);
        if (a == b) {
            ntt(a, false);
            b = a;
        } else
            ntt(a, false), ntt(b, false);
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    } else {
        std::vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val;
        for (int i = 0; i < m; i++) bi[i] = b[i].val;
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); }
    }
    return a;
}

// Calculate [x^N](num(x) / den(x))
// - Coplexity: O(LlgLlgN) ( L = size(num) + size(den) )
// - Reference: `Bostan–Mori algorithm` <https://qiita.com/ryuhe1/items/da5acbcce4ac1911f47a>
template <typename Tp> Tp coefficient_of_rational_function(long long N, std::vector<Tp> num, std::vector<Tp> den) {
    assert(N >= 0);
    while (den.size() and den.back() == 0) den.pop_back();
    assert(den.size());
    int h = 0;
    while (den[h] == 0) h++;
    N += h;
    den.erase(den.begin(), den.begin() + h);

    if (den.size() == 1) {
        assert(N < int(num.size()));
        return num[N] / den[0];
    }

    while (N) {
        std::vector<Tp> g = den;
        for (size_t i = 1; i < g.size(); i += 2) { g[i] = -g[i]; }
        auto conv_num_g = nttconv(num, g);
        num.resize((conv_num_g.size() + 1 - (N & 1)) / 2);
        for (size_t i = 0; i < num.size(); i++) { num[i] = conv_num_g[i * 2 + (N & 1)]; }
        auto conv_den_g = nttconv(den, g);
        for (size_t i = 0; i < den.size(); i++) { den[i] = conv_den_g[i * 2]; }
        N >>= 1;
    }
    return num[0] / den[0];
}

// Find the n-th term of the sequence (0-ORIGIN)
// Complexity: O(K lg K \log N)
// ainit = [a_0, a_1,..., ]
// c[0] = 1, \sum_j a_{i - j} * c_j = 0
template <typename Tp> Tp find_kth_term(std::vector<Tp> ainit, const std::vector<Tp> c, long long n) {
    assert(ainit.size() + 1 == c.size());
    auto a = nttconv(ainit, c);
    a.resize(ainit.size());
    return coefficient_of_rational_function(n, a, c);
}

struct rand_int_ {
    using lint = long long;
    mt19937 mt;
    rand_int_() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}
    lint operator()(lint x) { return this->operator()(0, x); } // [0, x)
    lint operator()(lint l, lint r) {
        uniform_int_distribution<lint> d(l, r - 1);
        return d(mt);
    }
} rnd;

int main() {
    int K;
    lint N;
    cin >> K >> N;
    vector<lint> A(K), B(K);
    cin >> A >> B;
    if (N < K) {
        cout << A[N] << '\n';
        return 0;
    }
    vector<lint> zs = A;
    zs.insert(zs.end(), B.begin(), B.end());
    zs = sort_unique(zs);
    int lo = 0, hi = zs.size();
    while (hi - lo > 1) {
        const int c = (lo + hi) / 2;
        vector<mint> ainit(K), C(K + 1);
        C[0] = 1;
        REP(i, K) if (A[i] >= zs[c]) ainit[i] = rnd(1, 1 << 28);
        REP(i, K) if (B[i] >= zs[c]) C[K - i] = rnd(1, 1 << 28);
        auto f = find_kth_term(ainit, C, N);
        (f ? lo : hi) = c;
    }
    cout << zs[lo] << '\n';
}
0