結果
問題 | No.1324 Approximate the Matrix |
ユーザー | hitonanode |
提出日時 | 2021-05-13 19:28:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 90 ms / 2,000 ms |
コード長 | 9,754 bytes |
コンパイル時間 | 1,797 ms |
コンパイル使用メモリ | 157,516 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-25 07:44:36 |
合計ジャッジ時間 | 3,995 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 86 ms
6,944 KB |
testcase_04 | AC | 85 ms
6,940 KB |
testcase_05 | AC | 87 ms
6,944 KB |
testcase_06 | AC | 85 ms
6,940 KB |
testcase_07 | AC | 86 ms
6,944 KB |
testcase_08 | AC | 7 ms
6,940 KB |
testcase_09 | AC | 7 ms
6,944 KB |
testcase_10 | AC | 13 ms
6,944 KB |
testcase_11 | AC | 22 ms
6,940 KB |
testcase_12 | AC | 5 ms
6,940 KB |
testcase_13 | AC | 4 ms
6,944 KB |
testcase_14 | AC | 25 ms
6,944 KB |
testcase_15 | AC | 9 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 16 ms
6,940 KB |
testcase_18 | AC | 6 ms
6,940 KB |
testcase_19 | AC | 6 ms
6,944 KB |
testcase_20 | AC | 4 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 15 ms
6,944 KB |
testcase_24 | AC | 34 ms
6,940 KB |
testcase_25 | AC | 18 ms
6,944 KB |
testcase_26 | AC | 17 ms
6,944 KB |
testcase_27 | AC | 8 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 90 ms
6,940 KB |
testcase_38 | AC | 89 ms
6,940 KB |
testcase_39 | AC | 86 ms
6,940 KB |
testcase_40 | AC | 88 ms
6,940 KB |
testcase_41 | AC | 87 ms
6,944 KB |
testcase_42 | AC | 5 ms
6,944 KB |
testcase_43 | AC | 5 ms
6,940 KB |
testcase_44 | AC | 5 ms
6,940 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) (x) #endif /* MinCostFlow: Minimum-cost flow problem solver WITH NO NEGATIVE CYCLE (just negative cost edge is allowed) Verified by SRM 770 Div1 Medium <https://community.topcoder.com/stat?c=problem_statement&pm=15702> */ template <typename CAP = long long, typename COST = long long> struct MinCostFlow { const COST INF_COST = std::numeric_limits<COST>::max() / 2; struct edge { int to, rev; CAP cap; COST cost; friend std::ostream &operator<<(std::ostream &os, const edge &e) { os << '(' << e.to << ',' << e.rev << ',' << e.cap << ',' << e.cost << ')'; return os; } }; int V; std::vector<std::vector<edge>> g; std::vector<COST> dist; std::vector<int> prevv, preve; std::vector<COST> dual; // dual[V]: potential std::vector<std::pair<int, int>> pos; bool _calc_distance_bellman_ford(int s) { // O(VE), able to detect negative cycle dist.assign(V, INF_COST); dist[s] = 0; bool upd = true; int cnt = 0; while (upd) { upd = false; cnt++; if (cnt > V) return false; // Negative cycle existence for (int v = 0; v < V; v++) if (dist[v] != INF_COST) { for (int i = 0; i < (int)g[v].size(); i++) { edge &e = g[v][i]; COST c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; upd = true; } } } } return true; } bool _calc_distance_dijkstra(int s) { // O(ElogV) dist.assign(V, INF_COST); dist[s] = 0; using P = std::pair<COST, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> q; q.emplace(0, s); while (!q.empty()) { P p = q.top(); q.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < (int)g[v].size(); i++) { edge &e = g[v][i]; COST c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; q.emplace(dist[e.to], e.to); } } } return true; } MinCostFlow(int V = 0) : V(V), g(V) {} void add_edge(int from, int to, CAP cap, COST cost) { assert(0 <= from and from < V); assert(0 <= to and to < V); pos.emplace_back(from, g[from].size()); g[from].emplace_back(edge{to, (int)g[to].size() + (from == to), cap, cost}); g[to].emplace_back(edge{from, (int)g[from].size() - 1, (CAP)0, -cost}); } std::pair<CAP, COST> flow(int s, int t, const CAP &f) { /* Flush amount of `f` from `s` to `t` using the Dijkstra's algorithm works for graph with no negative cycles (negative cost edges are allowed) retval: (flow, cost) */ COST ret = 0; dual.assign(V, 0); prevv.assign(V, -1); preve.assign(V, -1); CAP frem = f; while (frem > 0) { _calc_distance_dijkstra(s); if (dist[t] == INF_COST) break; for (int v = 0; v < V; v++) dual[v] = std::min(dual[v] + dist[v], INF_COST); CAP d = frem; for (int v = t; v != s; v = prevv[v]) { d = std::min(d, g[prevv[v]][preve[v]].cap); } frem -= d; ret += d * dual[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = g[prevv[v]][preve[v]]; e.cap -= d; g[v][e.rev].cap += d; } } return std::make_pair(f - frem, ret); } friend std::ostream &operator<<(std::ostream &os, const MinCostFlow &mcf) { os << "[MinCostFlow]V=" << mcf.V << ":"; for (int i = 0; i < (int)mcf.g.size(); i++) for (auto &e : mcf.g[i]) { os << "\n" << i << "->" << e.to << ": cap=" << e.cap << ", cost=" << e.cost; } return os; } }; int main() { int N, K; cin >> N >> K; vector<int> A(N), B(N); vector P(N, vector<int>(N)); cin >> A >> B >> P; const int gs = N * 2, gt = gs + 1; MinCostFlow<int, lint> graph(gt + 1); lint ret = 0; REP(i, N) REP(j, N) { ret += P[i][j] * P[i][j]; REP(a, A[i]) graph.add_edge(i, j + N, 1, 2 * (a - P[i][j]) + 1); } REP(i, N) { graph.add_edge(gs, i, A[i], 0); graph.add_edge(i + N, gt, B[i], 0); } cout << ret + graph.flow(gs, gt, K).second << '\n'; }