結果
| 問題 | No.1507 Road Blocked |
| コンテスト | |
| ユーザー |
LayCurse
|
| 提出日時 | 2021-05-14 22:09:16 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 29 ms / 2,000 ms |
| コード長 | 8,106 bytes |
| 記録 | |
| コンパイル時間 | 3,662 ms |
| コンパイル使用メモリ | 213,608 KB |
| 最終ジャッジ日時 | 2025-01-21 11:13:49 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
void*wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
struct graph{
int N;
int*es;
int**edge;
void setEdge(int N__, int M, int A[], int B[], void **mem = &wmem){
int i;
N = N__;
walloc1d(&es, N, mem);
walloc1d(&edge, N, mem);
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
es[A[i]]++;
es[B[i]]++;
}
for(i=(0);i<(N);i++){
walloc1d(&edge[i], es[i], mem);
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
edge[A[i]][es[A[i]]++] = B[i];
edge[B[i]][es[B[i]]++] = A[i];
}
}
void SubTreeSize(int root, int res[], void *mem = wmem){
int i;
int j;
int k;
int m;
int*q;
int qs = 0;
int qe = 1;
walloc1d(&q,N,&mem);
for(i=(0);i<(N);i++){
res[i] = -1;
}
res[root] = 0;
q[0] = root;
while(qs < qe){
i = q[qs++];
for(j=(0);j<(es[i]);j++){
k = edge[i][j];
if(res[k]==0){
continue;
}
res[k] = 0;
q[qe++] = k;
}
}
for(m=(N)-1;m>=(0);m--){
i = q[m];
res[i] = 1;
for(j=(0);j<(es[i]);j++){
k = edge[i][j];
res[i] += res[k];
}
}
}
}
;
int N;
int A[100000];
int B[100000];
graph g;
int sz[100000];
int main(){
int i;
wmem = memarr;
Modint res = 0;
rd(N);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N-1);Lj4PdHRW++){
rd(A[Lj4PdHRW]);A[Lj4PdHRW] += (-1);
rd(B[Lj4PdHRW]);B[Lj4PdHRW] += (-1);
}
}
g.setEdge(N,N-1,A,B);
g.SubTreeSize(0,sz);
for(i=(1);i<(N);i++){
res += (long long) sz[i] * (sz[i] - 1);
}
for(i=(1);i<(N);i++){
res += (long long) (N - sz[i]) * (N - sz[i] - 1);
}
res /= (long long) N * (N-1);
res /= N-1;
wt_L(res);
wt_L('\n');
return 0;
}
// cLay version 20210508-1 [beta]
// --- original code ---
// #define MD 998244353
// int N, A[1d5], B[1d5];
// graph g;
// int sz[];
// {
// Modint res = 0;
// rd(N,(A--,B--)(N-1));
// g.setEdge(N,N-1,A,B);
// g.SubTreeSize(0,sz);
// rep(i,1,N) res += (ll) sz[i] * (sz[i] - 1);
// rep(i,1,N) res += (ll) (N - sz[i]) * (N - sz[i] - 1);
// res /= (ll) N * (N-1);
// res /= N-1;
// wt(res);
// }
LayCurse