結果

問題 No.1507 Road Blocked
ユーザー LayCurseLayCurse
提出日時 2021-05-14 22:09:16
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 8,106 bytes
コンパイル時間 2,597 ms
コンパイル使用メモリ 214,980 KB
実行使用メモリ 8,960 KB
最終ジャッジ日時 2024-10-02 01:24:55
合計ジャッジ時間 5,285 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 8 ms
8,832 KB
testcase_04 AC 15 ms
8,960 KB
testcase_05 AC 15 ms
8,832 KB
testcase_06 AC 16 ms
8,960 KB
testcase_07 AC 15 ms
8,960 KB
testcase_08 AC 15 ms
8,960 KB
testcase_09 AC 16 ms
8,832 KB
testcase_10 AC 15 ms
8,832 KB
testcase_11 AC 17 ms
8,960 KB
testcase_12 AC 16 ms
8,960 KB
testcase_13 AC 16 ms
8,832 KB
testcase_14 AC 15 ms
8,960 KB
testcase_15 AC 15 ms
8,960 KB
testcase_16 AC 15 ms
8,832 KB
testcase_17 AC 15 ms
8,832 KB
testcase_18 AC 15 ms
8,832 KB
testcase_19 AC 16 ms
8,832 KB
testcase_20 AC 16 ms
8,960 KB
testcase_21 AC 16 ms
8,832 KB
testcase_22 AC 15 ms
8,832 KB
testcase_23 AC 15 ms
8,960 KB
testcase_24 AC 15 ms
8,960 KB
testcase_25 AC 16 ms
8,832 KB
testcase_26 AC 15 ms
8,832 KB
testcase_27 AC 16 ms
8,832 KB
testcase_28 AC 16 ms
8,832 KB
testcase_29 AC 16 ms
8,960 KB
testcase_30 AC 17 ms
8,832 KB
testcase_31 AC 15 ms
8,960 KB
testcase_32 AC 16 ms
8,960 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
void*wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
struct graph{
  int N;
  int*es;
  int**edge;
  void setEdge(int N__, int M, int A[], int B[], void **mem = &wmem){
    int i;
    N = N__;
    walloc1d(&es, N, mem);
    walloc1d(&edge, N, mem);
    for(i=(0);i<(N);i++){
      es[i] = 0;
    }
    for(i=(0);i<(M);i++){
      es[A[i]]++;
      es[B[i]]++;
    }
    for(i=(0);i<(N);i++){
      walloc1d(&edge[i], es[i], mem);
    }
    for(i=(0);i<(N);i++){
      es[i] = 0;
    }
    for(i=(0);i<(M);i++){
      edge[A[i]][es[A[i]]++] = B[i];
      edge[B[i]][es[B[i]]++] = A[i];
    }
  }
  void SubTreeSize(int root, int res[], void *mem = wmem){
    int i;
    int j;
    int k;
    int m;
    int*q;
    int qs = 0;
    int qe = 1;
    walloc1d(&q,N,&mem);
    for(i=(0);i<(N);i++){
      res[i] = -1;
    }
    res[root] = 0;
    q[0] = root;
    while(qs < qe){
      i = q[qs++];
      for(j=(0);j<(es[i]);j++){
        k = edge[i][j];
        if(res[k]==0){
          continue;
        }
        res[k] = 0;
        q[qe++] = k;
      }
    }
    for(m=(N)-1;m>=(0);m--){
      i = q[m];
      res[i] = 1;
      for(j=(0);j<(es[i]);j++){
        k = edge[i][j];
        res[i] += res[k];
      }
    }
  }
}
;
int N;
int A[100000];
int B[100000];
graph g;
int sz[100000];
int main(){
  int i;
  wmem = memarr;
  Modint res = 0;
  rd(N);
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=(0);Lj4PdHRW<(N-1);Lj4PdHRW++){
      rd(A[Lj4PdHRW]);A[Lj4PdHRW] += (-1);
      rd(B[Lj4PdHRW]);B[Lj4PdHRW] += (-1);
    }
  }
  g.setEdge(N,N-1,A,B);
  g.SubTreeSize(0,sz);
  for(i=(1);i<(N);i++){
    res += (long long) sz[i] * (sz[i] - 1);
  }
  for(i=(1);i<(N);i++){
    res += (long long) (N - sz[i]) * (N - sz[i] - 1);
  }
  res /= (long long) N * (N-1);
  res /= N-1;
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay version 20210508-1 [beta]

// --- original code ---
// #define MD 998244353
// int N, A[1d5], B[1d5];
// graph g;
// int sz[];
// {
//   Modint res = 0;
//   rd(N,(A--,B--)(N-1));
//   g.setEdge(N,N-1,A,B);
//   g.SubTreeSize(0,sz);
//   rep(i,1,N) res += (ll) sz[i] * (sz[i] - 1);
//   rep(i,1,N) res += (ll) (N - sz[i]) * (N - sz[i] - 1);
//   res /= (ll) N * (N-1);
//   res /= N-1;
//   wt(res);
// }
0