結果

問題 No.1488 Max Score of the Tree
ユーザー 👑 KazunKazun
提出日時 2021-05-21 02:19:53
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 108 ms / 2,000 ms
コード長 14,052 bytes
コンパイル時間 206 ms
コンパイル使用メモリ 82,536 KB
実行使用メモリ 67,400 KB
最終ジャッジ日時 2024-10-10 07:26:07
合計ジャッジ時間 3,761 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 91 ms
65,996 KB
testcase_01 AC 99 ms
65,444 KB
testcase_02 AC 103 ms
65,516 KB
testcase_03 AC 100 ms
66,492 KB
testcase_04 AC 108 ms
67,076 KB
testcase_05 AC 50 ms
57,540 KB
testcase_06 AC 65 ms
65,228 KB
testcase_07 AC 84 ms
66,012 KB
testcase_08 AC 73 ms
65,384 KB
testcase_09 AC 70 ms
66,288 KB
testcase_10 AC 78 ms
67,400 KB
testcase_11 AC 101 ms
67,012 KB
testcase_12 AC 51 ms
64,784 KB
testcase_13 AC 64 ms
65,540 KB
testcase_14 AC 75 ms
65,068 KB
testcase_15 AC 69 ms
64,720 KB
testcase_16 AC 56 ms
64,276 KB
testcase_17 AC 62 ms
64,436 KB
testcase_18 AC 84 ms
65,376 KB
testcase_19 AC 70 ms
65,228 KB
testcase_20 AC 62 ms
65,972 KB
testcase_21 AC 57 ms
64,372 KB
testcase_22 AC 68 ms
65,808 KB
testcase_23 AC 49 ms
57,340 KB
testcase_24 AC 47 ms
57,632 KB
testcase_25 AC 48 ms
57,336 KB
testcase_26 AC 63 ms
65,252 KB
testcase_27 AC 57 ms
65,068 KB
testcase_28 AC 58 ms
65,100 KB
testcase_29 AC 64 ms
64,896 KB
testcase_30 AC 89 ms
65,656 KB
testcase_31 AC 106 ms
67,372 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class Tree:
    def __init__(self,N,index=0):
        """N頂点(index, index+1, ..., N-1+index)の根付き木を生成する.
        """
        self.N=N
        self.index=index
        self.parent=[-1]*(N+index)
        self.__mutable=True

    def vertex_exist(self,x):
        return self.index<=x<self.index+self.N

    def __after_seal_check(self,*vertexes):
        if self.__mutable:
            return False

        for v in vertexes:
            if not self.vertex_exist(v):
                return False
        return True

    def is_mutable(self):
        return self.__mutable

    #設定パート
    def root_set(self,root):
        """頂点xを根に設定する.
        """
        assert self.vertex_exist(root)
        assert self.__mutable

        self.root=root

    def parent_set(self,x,y):
        """頂点xの親をyに設定する.
        """
        assert self.vertex_exist(x)
        assert self.vertex_exist(y)
        assert self.__mutable

        self.parent[x]=y

    def child_set(self,x,y):
        """頂点xの子の一つにyを設定する.
        """
        assert self.vertex_exist(x)
        assert self.vertex_exist(y)
        assert self.__mutable

        self.parent[y]=x

    def seal(self):
        """木の情報を確定させる.
        """
        assert self.__mutable
        assert hasattr(self,"root")

        a=self.index
        b=self.index+self.N
        C=[[] for _ in range(b)]

        p=self.parent
        ve=self.vertex_exist
        for i in range(a,b):
            if i!=self.root:
                assert ve(p[i])
                C[p[i]].append(i)

        self.__mutable=False
        self.children=C

    #データを求める.
    def depth_search(self,Mode=True):
        """木の深さを求める.
        """

        assert self.__after_seal_check()

        if hasattr(self,"depth"):
            return self.depth

        from collections import deque
        C=self.children
        D=[-1]*(self.index+self.N)
        E=[[] for _ in range(self.N)]

        Q=deque([self.root])
        D[self.root]=0
        E[0]=[self.root]

        while Q:
            x=Q.popleft()
            d=D[x]
            for y in C[x]:
                D[y]=d+1
                E[d+1].append(y)
                Q.append(y)

        self.depth=D
        self.tower=E

        if Mode:
            return D

    def vertex_depth(self,x):
        """頂点xの深さを求める.
        """
        assert self.__after_seal_check(x)

        if not hasattr(self,"depth"):
            self.depth_search(Mode=False)
        return self.depth[x]

    def __upper_list(self):
        assert self.__after_seal_check()

        if hasattr(self,"upper_list"):
            return

        if not hasattr(self,"depth"):
            self.depth_search(False)

        b=max(self.depth).bit_length()
        X=[[-1]*(self.index+self.N) for _ in range(b)]

        Y=X[0]
        p=self.parent
        rg=range(self.index,self.index+self.N)

        for x in rg:
            if x!=self.root:
                Y[x]=p[x]
            else:
                Y[x]=self.root

        for k in range(1,b):
            Y=X[k-1]
            Z=X[k]

            for x in rg:
                Z[x]=Y[Y[x]]
        self.upper_list=X

    def upper(self,x,k,over=True):
        """頂点xから見てk個親の頂点を求める.

        over:(頂点xの深さ)<kのときにTrueならば根を返し, Falseならばエラーを吐く.
        """

        assert self.__after_seal_check(x)
        assert 0<=k

        if not hasattr(self,"upper_list"):
            self.__upper_list()

        if self.vertex_depth(x)<k:
            if over:
                return self.root
            else:
                raise ValueError

        i=0
        while k:
            if k&1:
                x=self.upper_list[i][x]
            k>>=1
            i+=1
        return x

    def lowest_common_ancestor(self,x,y):
        """頂点x,yの最小共通先祖(x,yに共通する先祖で最も深いもの)を求める.
        """

        assert self.__after_seal_check(x,y)

        dd=self.vertex_depth(y)-self.vertex_depth(x)
        if dd<0:
            x,y=y,x
            dd=-dd

        y=self.upper(y,dd)
        if x==self.root:
            return x
        if x==y:
            return x

        d=self.vertex_depth(x)
        b=d.bit_length()

        X=self.upper_list
        for k in range(b-1,-1,-1):
            px=X[k][x];py=X[k][y]
            if px!=py:
                x=px;y=py

        return self.upper(x,1)

    def __degree_count(self):
        assert self.__after_seal_check()

        if hasattr(self,"deg"):
            return

        self.deg=[0]*(self.index+self.N)
        for v in range(self.index,self.index+self.N):
            d=len(self.children[v])+1
            if d!=self.root:
                d-=1
            self.deg[v]=d
        return

    def degree(self,v):
        """頂点vの次数を求める.
        """
        assert self.__after_seal_check(v)

        if not hasattr(self,"deg"):
            self.__degree_count()
        return self.deg[v]

    def diameter(self):
        """木の直径を求める.
        """
        assert self.__after_seal_check()

        from collections import deque
        def bfs(start):
            X=[-1]*(self.index+self.N)
            Q=deque([start])
            X[start]=0

            pa=self.parent
            ch=self.children
            while Q:
                x=Q.popleft()

                if X[pa[x]]==-1:
                    Q.append(pa[x])
                    X[pa[x]]=X[x]+1

                for y in ch[x]:
                    if X[y]==-1:
                        Q.append(y)
                        X[y]=X[x]+1
            y=max(range(self.index,self.index+self.N),key=lambda x:X[x])
            return y,X[y]

        y,_=bfs(self.root)
        z,d=bfs(y)
        return y,z,d

    def path(self,u,v):
        """頂点u,v間のパスを求める.
        """
        assert self.__after_seal_check(u,v)

        w=self.lowest_common_ancestor(u,v)
        pa=self.parent

        X=[u]
        while u!=w:
            u=pa[u]
            X.append(u)

        Y=[v]
        while v!=w:
            v=pa[v]
            Y.append(v)
        return X+Y[-2::-1]

    def is_brother(self,u,v):
        """2つの頂点u,vは兄弟 (親が同じ) か?
        """
        assert self.__after_seal_check(u,v)

        if u==self.root or v==self.root:
            return False
        return self.parent[u]==self.parent[v]

    def is_ancestor(self,u,v):
        """頂点uは頂点vの先祖か?
        """
        assert self.__after_seal_check(u,v)

        dd=self.vertex_depth(v)-self.vertex_depth(u)
        if dd<0:
            return False

        v=self.upper(v,dd)
        return u==v

    def is_descendant(self,u,v):
        """頂点uは頂点vの子孫か?
        """
        assert self.__after_seal_check(u,v)
        return self.is_ancestor(v,u)

    def is_leaf(self,v):
        """頂点vは葉?
        """

        return not bool(self.children[v])

    def distance(self,u,v):
        """2頂点u,v間の距離を求める.
        """
        assert self.__after_seal_check(u,v)

        dep=self.vertex_depth
        return dep(u)+dep(v)-2*dep(self.lowest_common_ancestor(u,v))

    def __descendant_count(self):
        assert self.__after_seal_check()
        if hasattr(self,"des_count"):
            return

        if not hasattr(self,"tower"):
            self.depth_search(False)

        self.des_count=[1]*(self.index+self.N)
        pa=self.parent
        for T in self.tower[:0:-1]:
            for x in T:
                self.des_count[pa[x]]+=self.des_count[x]
        return

    def descendant_count(self,v):
        """頂点vの子孫の数を求める.
        """
        assert self.__after_seal_check(v)
        self.__descendant_count()
        return self.des_count[v]

    def subtree_size(self,v):
        """頂点vを根とした部分根付き木のサイズを求める.
        """
        return self.descendant_count(v)

    def preorder(self,v):
        """頂点vの行きがけ順を求める.
        """
        assert self.__after_seal_check(v)
        if hasattr(self,"preorder_number"):
            self.preorder_number[v]

        from collections import deque
        Q=deque([self.root])
        T=[-1]*(self.N+self.index)

        p=1
        while Q:
            x=Q.popleft()
            T[x]=p
            p+=1

            C=self.children[x]
            for y in C:
                Q.append(y)
        self.preorder_number=T
        return T[v]

    def dfs_yielder(self):
        """DFSにおける頂点の出入りをyieldする.

        (v,1): 頂点vに入る
        (v,0): 頂点vを出る
        """
        assert self.__after_seal_check()

        #最初
        yield (self.root,1)

        v=self.root

        ch=self.children
        pa=self.parent

        R=[-1]*self.index+[len(ch[x]) for x in range(self.index,self.index+self.N)]
        S=[0]*(self.index+self.N)

        while True:
            if R[v]==S[v]:  #もし,進めないならば
                yield (v,0) #頂点vを出る
                if v==self.root:
                    break
                else:
                    v=pa[v]
            else:   #進める
                w=v
                v=ch[v][S[v]]
                S[w]+=1
                yield (v,1)

    def top_down(self):
        assert self.__after_seal_check()
        if not hasattr(self,"tower"):
            self.depth_search(False)

        for E in self.tower:
            for v in E:
                yield v

    def bottom_up(self):
        assert self.__after_seal_check()
        if not hasattr(self,"tower"):
            self.depth_search(False)

        for E in self.tower[::-1]:
            for v in E:
                yield v

    def tree_dp(self,calc,unit,f,g,Mode=False):
        """葉から木DPを行う.

        [input]
        calc:モノイドを成す2項演算 M x M -> M
        unit:Mの単位元
        f,g: M -> M
        Mode: False->根の値のみ, True->全ての値

        [補足]
        頂点 v の子が x,y,z,...のとき, 更新式は
        dp[v]=g(f(x)*f(y)*f(z)*...)
        になる.
        """

        data=[unit]*(self.index+self.N)
        pa=self.parent
        for x in self.bottom_up():
            if x==self.root:
                break

            data[x]=g(data[x])
            data[pa[x]]=calc(data[pa[x]],f(data[x]))

        if Mode:
            return data
        else:
            return data[self.root]

    def euler_tour(self):
        """ オイラーツアーに関する計算を行う.
        """

        assert self.__after_seal_check()

        #最初
        X=[]; X_append=X.append #X: Euler Tour のリスト

        v=self.root

        ch=self.children
        pa=self.parent

        R=[-1]*self.index+[len(ch[x]) for x in range(self.index,self.index+self.N)]
        S=[0]*(self.index+self.N)
        while True:
            X_append(v)
            if R[v]==S[v]:  #もし,進めないならば
                if v==self.root:
                    break
                else:
                    v=pa[v]
            else:   #進める
                w=v
                v=ch[v][S[v]]
                S[w]+=1

        self.euler=X
        self.in_time=[-1]*(self.index+self.N)
        self.out_time=[-1]*(self.index+self.N)
        for i in range(len(X)):
            v=X[i]
            if self.in_time[v]==-1:
                self.in_time[v]=self.out_time[v]=i
            else:
                self.out_time[v]=i
#=================================================
def Making_Tree(N,E,root,index=0):
    """木を作る.

    N:頂点数
    E:辺のリスト
    root:根
    """

    from collections import deque
    F=[[] for _ in range(index+N)]
    for u,v in E:
        assert index<=u<index+N
        assert index<=v<index+N
        assert u!=v

        F[u].append(v)
        F[v].append(u)

    X=[-1]*(index+N)
    X[root]=root

    C=[[] for _ in range(index+N)]

    Q=deque([root])
    while Q:
        x=Q.popleft()
        for y in F[x]:
            if X[y]==-1:
                X[y]=x
                Q.append(y)
                C[x].append(y)

    T=Tree(N,index)
    T.root_set(root)
    T.parent=X
    T.children=C
    T.seal()
    return T

def Knapsack_01_Weight(List,Weight,Mode=False):
    """重さが非常に軽い01-Knapsack Problemを解く.

    List:各要素はタプル(v,w) の形で, vは価値, wは重さ
    Mode:Mode=Trueのとき, 最大値とそれを達成する例を返す.
    [計算量]
    O(NW)
    """

    if Mode:
        X=[[0]*(Weight+1) for _ in range(len(List)+1)]
        for i,(v,w) in enumerate(List,0):
            E=X[i]
            F=X[i+1]

            for s in range(Weight,w-1,-1):
                F[s]=max(E[s],E[s-w]+v)
        alpha=max(X[-1])
        W=X[-1].index(alpha)

        L=[]
        for i in range(len(List)-1,-1,-1):
            if X[i+1][W]>X[i][W]:
                v,w=List[i]
                L.append((i,List[i]))
                W-=w
        return alpha,L[::-1]
    else:
        X=[0]*(Weight+1)
        for v,w in List:
            for s in range(Weight,w-1,-1):
                X[s]=max(X[s],X[s-w]+v)
        return max(X)
#==================================================
N,K=map(int,input().split())

E=[]; F={}
for _ in range(N-1):
    a,b,c=map(int,input().split())

    if a>b: a,b=b,a
    E.append((a,b))
    F[(a,b)]=c

root=1
T=Making_Tree(N,E,1,1)

Under_Leaf=[0]*(N+1)
ch=T.children
for v in T.bottom_up():
    if T.is_leaf(v):
        Under_Leaf[v]=1
    else:
        for w in ch[v]:
            Under_Leaf[v]+=Under_Leaf[w]

Base=0
X=[]
T.depth_search(False)
dep=T.depth
for u,v in F:
    if dep[u]<dep[v]: w=v
    else: w=u

    a=min(u,v)
    b=max(u,v)

    Base+=F[(a,b)]*Under_Leaf[w]
    X.append((F[(a,b)]*Under_Leaf[w],F[(a,b)]))

print(Base+Knapsack_01_Weight(X,K,False))
0