結果
| 問題 | No.1516 simple 門松列 problem Re:MASTER |
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2021-05-21 21:43:36 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 586 ms / 6,000 ms |
| コード長 | 4,214 bytes |
| 記録 | |
| コンパイル時間 | 2,225 ms |
| コンパイル使用メモリ | 198,868 KB |
| 最終ジャッジ日時 | 2025-01-21 14:45:08 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using Int = long long;
const char newl = '\n';
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}
template<typename T=int>
vector<T> read(size_t n){
vector<T> ts(n);
for(size_t i=0;i<n;i++) cin>>ts[i];
return ts;
}
template<typename T, T MOD = 1000000007>
struct Mint{
inline static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator+() const{return *this;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
template<typename R, size_t N>
struct SquareMatrix{
typedef array<R, N> arr;
typedef array<arr, N> mat;
mat dat;
SquareMatrix(){
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
dat[i][j]=R::add_identity();
}
bool operator==(const SquareMatrix& a) const{
return dat==a.dat;
}
size_t size() const{return N;}
arr& operator[](size_t k){return dat[k];}
const arr& operator[](size_t k) const {return dat[k];}
static SquareMatrix add_identity(){return SquareMatrix();}
static SquareMatrix mul_identity(){
SquareMatrix res;
for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity();
return res;
}
SquareMatrix operator*(const SquareMatrix &B) const{
SquareMatrix res;
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
for(size_t k=0;k<N;k++)
res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const{
SquareMatrix res;
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
res[i][j]=dat[i][j]+B[i][j];
return res;
}
SquareMatrix pow(long long n) const{
SquareMatrix a=*this,res=mul_identity();
while(n){
if(n&1) res=res*a;
a=a*a;
n>>=1;
}
return res;
}
};
template<typename T>
bool is_kado(T a,T b,T c){
if(a==b or b==c or c==a) return 0;
if(a<b and b>c) return 1;
if(a>b and b<c) return 1;
return 0;
}
//INSERT ABOVE HERE
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
const int T = 9;
using M = Mint<int, 998244353>;
using SM = SquareMatrix<M, T*T*2>;
SM A=SM::add_identity();
int n,k;
cin>>n>>k;
auto idx=[&](int sum,int x,int y){return sum*T*T+x*T+y;};
for(int x=0;x<k;x++){
for(int y=0;y<k;y++){
for(int z=0;z<k;z++){
if(is_kado(x,y,z)){
A[idx(0,y,z)][idx(0,x,y)]+=M(1);
A[idx(1,y,z)][idx(0,x,y)]+=M(z);
A[idx(1,y,z)][idx(1,x,y)]+=M(1);
}
}
}
}
vector<M> B(T*T*2,0);
for(int x=0;x<k;x++)
for(int y=0;y<k;y++)
if(x!=y) B[idx(0,x,y)]+=M(1),B[idx(1,x,y)]+=M(x+y);
// A^(n-2) B
A=A.pow(n-2);
{
M ans{0};
for(int i=0;i<T*T;i++)
for(int j=0;j<T*T*2;j++)
ans+=A[i][j]*B[j];
cout<<ans<<' ';
}
{
M ans{0};
for(int i=0;i<T*T;i++)
for(int j=0;j<T*T*2;j++)
ans+=A[T*T+i][j]*B[j];
cout<<ans<<newl;
}
return 0;
}
beet