結果
| 問題 |
No.1513 simple 門松列 problem
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2021-05-21 21:46:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 127 ms / 3,000 ms |
| コード長 | 19,656 bytes |
| コンパイル時間 | 2,022 ms |
| コンパイル使用メモリ | 156,060 KB |
| 最終ジャッジ日時 | 2025-01-21 14:47:11 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 18 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif
template <int mod> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
using lint = long long;
MDCONST static int get_mod() { return mod; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = mod - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < mod; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((mod - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val;
MDCONST ModInt() : val(0) {}
MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; }
MDCONST ModInt(lint v) { _setval(v % mod + mod); }
MDCONST explicit operator bool() const { return val != 0; }
MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); }
MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
MDCONST bool operator==(const ModInt &x) const { return val == x.val; }
MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }
MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }
MDCONST ModInt pow(lint n) const {
lint ans = 1, tmp = this->val;
while (n) {
if (n & 1) ans = ans * tmp % mod;
tmp = tmp * tmp % mod, n /= 2;
}
return ans;
}
static std::vector<long long> facs, invs;
MDCONST static void _precalculation(int N) {
int l0 = facs.size();
if (N <= l0) return;
facs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod;
long long facinv = ModInt(facs.back()).pow(mod - 2).val;
for (int i = N - 1; i >= l0; i--) {
invs[i] = facinv * facs[i - 1] % mod;
facinv = facinv * i % mod;
}
}
MDCONST lint inv() const {
if (this->val < std::min(mod >> 1, 1 << 21)) {
while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val];
} else {
return this->pow(mod - 2).val;
}
}
MDCONST ModInt fac() const {
while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[this->val];
}
MDCONST ModInt doublefac() const {
lint k = (this->val + 1) / 2;
return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
: ModInt(k).fac() * ModInt(2).pow(k);
}
MDCONST ModInt nCr(const ModInt &r) const {
return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac());
}
ModInt sqrt() const {
if (val == 0) return 0;
if (mod == 2) return val;
if (pow((mod - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((mod - 1) / 2) == 1) b += 1;
int e = 0, m = mod - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val, mod - x.val));
}
};
template <int mod> std::vector<long long> ModInt<mod>::facs = {1};
template <int mod> std::vector<long long> ModInt<mod>::invs = {0};
using mint = ModInt<998244353>;
// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner = false);
constexpr int nttprimes[3] = {998244353, 167772161, 469762049};
// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
int n = a.size();
if (n == 1) return;
static const int mod = MODINT::get_mod();
static const MODINT root = MODINT::get_primitive_root();
assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);
static std::vector<MODINT> w{1}, iw{1};
for (int m = w.size(); m < n / 2; m *= 2) {
MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
w.resize(m * 2), iw.resize(m * 2);
for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
}
if (!is_inverse) {
for (int m = n; m >>= 1;) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
MODINT x = a[i], y = a[i + m] * w[k];
a[i] = x + y, a[i + m] = x - y;
}
}
}
} else {
for (int m = 1; m < n; m *= 2) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
MODINT x = a[i], y = a[i + m];
a[i] = x + y, a[i + m] = (x - y) * iw[k];
}
}
}
int n_inv = MODINT(n).inv();
for (auto &v : a) v *= n_inv;
}
}
template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
int sz = a.size();
assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
std::vector<ModInt<MOD>> ap(sz), bp(sz);
for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
ntt(ap, false);
if (a == b)
bp = ap;
else
ntt(bp, false);
for (int i = 0; i < sz; i++) ap[i] *= bp[i];
ntt(ap, true);
return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
using mint2 = ModInt<nttprimes[2]>;
static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv();
static const long long m01_inv_m2 = mint2(m01).inv();
int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val) % mod;
}
template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
int sz = 1, n = a.size(), m = b.size();
while (sz < n + m) sz <<= 1;
if (sz <= 16) {
std::vector<MODINT> ret(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
}
return ret;
}
int mod = MODINT::get_mod();
if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
a.resize(sz), b.resize(sz);
if (a == b) {
ntt(a, false);
b = a;
} else
ntt(a, false), ntt(b, false);
for (int i = 0; i < sz; i++) a[i] *= b[i];
ntt(a, true);
a.resize(n + m - 1);
} else {
std::vector<int> ai(sz), bi(sz);
for (int i = 0; i < n; i++) ai[i] = a[i].val;
for (int i = 0; i < m; i++) bi[i] = b[i].val;
auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
a.resize(n + m - 1);
for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); }
}
return a;
}
// Berlekamp–Massey algorithm
// https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// Complexity: O(N^2)
// input: S = sequence from field K
// return: L = degree of minimal polynomial,
// C_reversed = monic min. polynomial (size = L + 1, reversed order, C_reversed[0] = 1))
// Formula: convolve(S, C_reversed)[i] = 0 for i >= L
// Example:
// - [1, 2, 4, 8, 16] -> (1, [1, -2])
// - [1, 1, 2, 3, 5, 8] -> (2, [1, -1, -1])
// - [0, 0, 0, 0, 1] -> (5, [1, 0, 0, 0, 0, 998244352]) (mod 998244353)
// - [] -> (0, [1])
// - [0, 0, 0] -> (0, [1])
// - [-2] -> (1, [1, 2])
template <typename Tfield> std::pair<int, std::vector<Tfield>> find_linear_recurrence(const std::vector<Tfield> &S) {
int N = S.size();
using poly = std::vector<Tfield>;
poly C_reversed{1}, B{1};
int L = 0, m = 1;
Tfield b = 1;
// adjust: C(x) <- C(x) - (d / b) x^m B(x)
auto adjust = [](poly C, const poly &B, Tfield d, Tfield b, int m) -> poly {
C.resize(std::max(C.size(), B.size() + m));
Tfield a = d / b;
for (unsigned i = 0; i < B.size(); i++) C[i + m] -= a * B[i];
return C;
};
for (int n = 0; n < N; n++) {
Tfield d = S[n];
for (int i = 1; i <= L; i++) d += C_reversed[i] * S[n - i];
if (d == 0)
m++;
else if (2 * L <= n) {
poly T = C_reversed;
C_reversed = adjust(C_reversed, B, d, b, m);
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else
C_reversed = adjust(C_reversed, B, d, b, m++);
}
return std::make_pair(L, C_reversed);
}
// Calculate ^N \bmod f(x)$
// Known as `Kitamasa method`
// Input: f_reversed: monic, reversed (f_reversed[0] = 1)
// Complexity: (K^2 \log N)$ ($: deg. of $)
// Example: (4, [1, -1, -1]) -> [2, 3]
// ( x^4 = (x^2 + x + 2)(x^2 - x - 1) + 3x + 2 )
// Reference: http://misawa.github.io/others/fast_kitamasa_method.html
// http://sugarknri.hatenablog.com/entry/2017/11/18/233936
template <typename Tfield>
std::vector<Tfield> monomial_mod_polynomial(long long N, const std::vector<Tfield> &f_reversed) {
assert(!f_reversed.empty() and f_reversed[0] == 1);
int K = f_reversed.size() - 1;
if (!K) return {};
int D = 64 - __builtin_clzll(N);
std::vector<Tfield> ret(K, 0);
ret[0] = 1;
auto self_conv = [](std::vector<Tfield> x) -> std::vector<Tfield> {
int d = x.size();
std::vector<Tfield> ret(d * 2 - 1);
for (int i = 0; i < d; i++) {
ret[i * 2] += x[i] * x[i];
for (int j = 0; j < i; j++) ret[i + j] += x[i] * x[j] * 2;
}
return ret;
};
for (int d = D; d--;) {
ret = self_conv(ret);
for (int i = 2 * K - 2; i >= K; i--) {
for (int j = 1; j <= K; j++) ret[i - j] -= ret[i] * f_reversed[j];
}
ret.resize(K);
if ((N >> d) & 1) {
std::vector<Tfield> c(K);
c[0] = -ret[K - 1] * f_reversed[K];
for (int i = 1; i < K; i++) { c[i] = ret[i - 1] - ret[K - 1] * f_reversed[K - i]; }
ret = c;
}
}
return ret;
}
// Guess k-th element of the sequence, assuming linear recurrence
// initial_elements: 0-ORIGIN
// Verify: abc198f https://atcoder.jp/contests/abc198/submissions/21837815
template <typename Tfield> Tfield guess_kth_term(const std::vector<Tfield> &initial_elements, long long k) {
assert(k >= 0);
if (k < static_cast<long long>(initial_elements.size())) return initial_elements[k];
const auto f = find_linear_recurrence<Tfield>(initial_elements).second;
const auto g = monomial_mod_polynomial<Tfield>(k, f);
Tfield ret = 0;
for (unsigned i = 0; i < g.size(); i++) ret += g[i] * initial_elements[i];
return ret;
}
int main() {
int N, K;
cin >> N >> K;
vector<vector<mint>> dp(K, vector<mint>(K));
REP(i, K) REP(j, K) if (i != j) {
dp[i][j] = 1;
}
vector<vector<vector<mint>>> cnt{dp};
REP(t, N) {
vector<vector<mint>> nxtup(K, vector<mint>(K));
vector<vector<mint>> nxtdown(K, vector<mint>(K));
REP(i, K) REP(j, i) {
nxtup[j][j + 1] += dp[i][j];
}
REP(i, K) FOR(j, i + 1, K) {
nxtdown[j][j - 1] += dp[i][j];
}
REP(i, K) REP(j, K - 1) nxtup[i][j + 1] += nxtup[i][j];
REP(i, K) IREP(j, K - 1) nxtdown[i][j] += nxtdown[i][j + 1];
vector<vector<mint>> nxt(K, vector<mint>(K));
REP(i, K) REP(j, K) {
nxt[i][j] = nxtup[i][j] + nxtdown[i][j] - dp[j][i];
}
dp = nxt;
cnt.push_back(dp);
}
mint ret1 = 0;
for (auto v : cnt[N - 2]) for (auto x : v) ret1 += x;
cout << ret1 << ' ' << ret1 * N * (K - 1) / 2 << '\n';
}
hitonanode