結果

問題 No.1516 simple 門松列 problem Re:MASTER
ユーザー LayCurseLayCurse
提出日時 2021-05-21 21:52:59
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 617 ms / 6,000 ms
コード長 12,799 bytes
コンパイル時間 2,877 ms
コンパイル使用メモリ 218,708 KB
実行使用メモリ 7,620 KB
最終ジャッジ日時 2024-10-10 08:25:55
合計ジャッジ時間 6,764 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 74 ms
6,820 KB
testcase_02 AC 345 ms
6,820 KB
testcase_03 AC 3 ms
6,820 KB
testcase_04 AC 3 ms
6,816 KB
testcase_05 AC 5 ms
6,820 KB
testcase_06 AC 21 ms
6,816 KB
testcase_07 AC 70 ms
6,816 KB
testcase_08 AC 86 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 25 ms
6,820 KB
testcase_11 AC 6 ms
6,816 KB
testcase_12 AC 3 ms
6,824 KB
testcase_13 AC 3 ms
7,492 KB
testcase_14 AC 617 ms
6,820 KB
testcase_15 AC 329 ms
6,820 KB
testcase_16 AC 192 ms
6,820 KB
testcase_17 AC 74 ms
6,820 KB
testcase_18 AC 24 ms
7,620 KB
testcase_19 AC 11 ms
6,820 KB
testcase_20 AC 460 ms
6,816 KB
testcase_21 AC 445 ms
6,816 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:633:32: warning: 'mt.Matrix<Modint>::dat' may be used uninitialized [-Wmaybe-uninitialized]
  633 |         mt[dm(0,i,j)][dm(0,j,k)]++;
      |                                ^
main.cpp:620:18: note: 'mt.Matrix<Modint>::dat' was declared here
  620 |   Matrix<Modint> mt(2*(K+1)*(K+1), 2*(K+1)*(K+1));
      |                  ^~

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> struct Matrix{
  int r;
  int c;
  int mem;
  T*dat;
  Matrix(){
    r=c=mem = 0;
  }
  Matrix(const int rr, const int cc){
    if(rr == 0 || cc == 0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    mem = r * c;
    if(mem > 0){
      dat = new T[mem];
    }
  }
  Matrix(const Matrix<T> &a){
    int i;
    r = a.r;
    c = a.c;
    mem = r * c;
    dat = new T[mem];
    for(i=(0);i<(mem);i++){
      dat[i] = a.dat[i];
    }
  }
  ~Matrix(){
    if(mem){
      delete [] dat;
    }
  }
  void changeSize(const int rr, const int cc){
    if(rr==0 || cc==0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    if(mem < r*c){
      if(mem){
        delete [] dat;
      }
      mem = r*c;
      dat = new T[mem];
    }
  }
  Matrix<T>& operator=(const Matrix<T> &a){
    int i;
    int j;
    r = a.r;
    c = a.c;
    j = r * c;
    changeSize(r,c);
    for(i=(0);i<(j);i++){
      dat[i] = a.dat[i];
    }
    return *this;
  }
  Matrix<T>& operator=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] = 0;
    }
    j =min_L(r, c);
    for(i=(0);i<(j);i++){
      dat[i*c+i] = a;
    }
    return *this;
  }
  Matrix<T>& operator+=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] += a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator+(const Matrix<T> &a){
    return Matrix<T>(*this) += a;
  }
  Matrix<T>& operator-=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] -= a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator-(const Matrix<T> &a){
    return Matrix<T>(*this) -= a;
  }
  Matrix<T>& operator*=(const Matrix<T> &a){
    int i;
    int j;
    int k;
    int x;
    T*m;
    if(r==0 || c!=a.r){
      changeSize(0,0);
      return *this;
    }
    m = (T*)wmem;
    x = r * a.c;
    for(i=(0);i<(x);i++){
      m[i] = 0;
    }
    for(i=(0);i<(r);i++){
      for(k=(0);k<(c);k++){
        for(j=(0);j<(a.c);j++){
          m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j];
        }
      }
    }
    changeSize(r, a.c);
    for(i=(0);i<(x);i++){
      dat[i] = m[i];
    }
    return *this;
  }
  Matrix<T> operator*(const Matrix<T> &a){
    return Matrix<T>(*this) *= a;
  }
  Matrix<T>& operator*=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const long long a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const double a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  inline T* operator[](const int a){
    return dat+a*c;
  }
}
;
template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){
  return Matrix<T>(b)*=a;
}
template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){
  int i;
  int j;
  Matrix<T> res;
  res.changeSize(a.r, a.c);
  res = 1;
  while(b){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    a *= a;
  }
  return res;
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
struct dimcomp3{
  int B;
  int C;
  dimcomp3(){
  }
  ;
  dimcomp3(int b, int c){
    B = b;
    C = c;
  }
  dimcomp3(int a, int b, int c){
    B = b;
    C = c;
  }
  inline void set(int b, int c){
    B = b;
    C = c;
  }
  inline void set(int a, int b, int c){
    B = b;
    C = c;
  }
  inline int mask(int a, int b, int c){
    return (a * B + b) * C + c;
  }
  inline int operator()(int a, int b, int c){
    return (a * B + b) * C + c;
  }
  inline void para(int mask, int &a, int &b, int &c){
    a = mask / (B*C);
    b = mask % (B*C) / C;
    c = mask % C;
  }
  inline void operator()(int mask, int &a, int &b, int &c){
    a = mask / (B*C);
    b = mask % (B*C) / C;
    c = mask % C;
  }
}
;
int isKado(int x,int y,int z){
  if(x==y||y==z||z==x){
    return 0;
  }
  if(x < y  &&  y < z){
    return 0;
  }
  if(x > y  &&  y > z){
    return 0;
  }
  return 1;
}
int main(){
  int i;
  wmem = memarr;
  int N;
  rd(N);
  int K;
  rd(K);
  Modint res1 = 0;
  Modint res2 = 0;
  Matrix<Modint> mt(2*(K+1)*(K+1), 2*(K+1)*(K+1));
  dimcomp3 dm(2,K+1,K+1);
  for(i=(0);i<(K+1);i++){
    int j;
    for(j=(0);j<(K+1);j++){
      int k;
      for(k=(0);k<(K);k++){
        if(j==k){
          continue;
        }
        if(i!=K && j!=K && !isKado(i,j,k)){
          continue;
        }
        mt[dm(0,i,j)][dm(0,j,k)]++;
        mt[dm(1,i,j)][dm(1,j,k)]++;
        mt[dm(0,i,j)][dm(1,j,k)]+=k;
      }
    }
  }
  (mt = pow_L(mt,N));
  for(i=(0);i<(K+1);i++){
    int j;
    for(j=(0);j<(K+1);j++){
      res1 += mt[dm(0,K,K)][dm(0,i,j)];
    }
  }
  for(i=(0);i<(K+1);i++){
    int j;
    for(j=(0);j<(K+1);j++){
      res2 += mt[dm(0,K,K)][dm(1,i,j)];
    }
  }
  wt_L(res1);
  wt_L(' ');
  wt_L(res2);
  wt_L('\n');
  return 0;
}
// cLay version 20210508-1 [beta]

// --- original code ---
// #define MD 998244353
// 
// int isKado(int x,int y,int z){
//   if(x==y||y==z||z==x) return 0;
//   if(x < y < z) return 0;
//   if(x > y > z) return 0;
//   return 1;
// }
// 
// {
//   int @N, @K;
//   Modint res1 = 0, res2 = 0;
//   Matrix<Modint> mt(2*(K+1)*(K+1), 2*(K+1)*(K+1));
//   dimcomp3 dm(2,K+1,K+1);
// 
//   rep(i,K+1) rep(j,K+1) rep(k,K){
//     if(j==k) continue;
//     if(i!=K && j!=K && !isKado(i,j,k)) continue;
//     mt[dm(0,i,j)][dm(0,j,k)]++;
//     mt[dm(1,i,j)][dm(1,j,k)]++;
//     mt[dm(0,i,j)][dm(1,j,k)]+=k;
//   }
//   mt **= N;
//   rep(i,K+1) rep(j,K+1) res1 += mt[dm(0,K,K)][dm(0,i,j)];
//   rep(i,K+1) rep(j,K+1) res2 += mt[dm(0,K,K)][dm(1,i,j)];
//   wt(res1,res2);
// }
0