結果
| 問題 |
No.1514 Squared Matching
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2021-05-21 22:00:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,400 bytes |
| コンパイル時間 | 1,841 ms |
| コンパイル使用メモリ | 196,560 KB |
| 最終ジャッジ日時 | 2025-01-21 15:11:19 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 TLE * 16 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr ld PI = acos(-1.0);
constexpr ld EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
// --------------------------------------
const int MAX_N = 5e7 + 10;
int can_div[MAX_N] = {};
int sq[MAX_N];
void init_prime()
{
can_div[1] = -1;
for (int i = 2; i < MAX_N; i++)
{
if (can_div[i] != 0)
continue;
for (int j = i; j < MAX_N; j += i)
can_div[j] = i;
}
for (int i = 1; i * i < MAX_N; i++)
{
sq[i * i] = i;
}
}
struct init_prime_
{
init_prime_() { init_prime(); };
} init_prime_;
int f(int n)
{
bool cnt = 0;
int res = n;
int prev = 1;
while (n > 1)
{
assert(can_div[n] > 1);
if (prev == can_div[n])
{
cnt ^= 1;
}
else
{
if (cnt and prev != -1)
res /= prev;
cnt = 1;
prev = can_div[n];
}
n /= can_div[n];
}
if (cnt)
{
res /= prev;
}
return sq[res];
}
void solve()
{
int n;
cin >> n;
ll sum = 0;
for (int i = 2; i <= n; i++)
{
sum += f(i) - 1;
}
ll ans = sum * 2 + n;
cout << ans << "\n";
}
int main()
{
solve();
}
stoq