結果
| 問題 | No.1514 Squared Matching |
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2021-05-21 22:37:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 471 ms / 4,000 ms |
| コード長 | 63,557 bytes |
| 記録 | |
| コンパイル時間 | 5,004 ms |
| コンパイル使用メモリ | 259,072 KB |
| 最終ジャッジ日時 | 2025-01-21 15:45:45 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
#line 1 "other-workspace\\c.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>
#line 2 "Library\\lib\\alias"
/**
* @file alias
* @brief Alias
*/
#line 13 "Library\\lib\\alias"
#line 2 "Library\\lib\\bit"
#if __cplusplus > 201703L
#include <bit>
#else
#ifndef _GLIBCXX_BIT
#define _GLIBCXX_BIT 1
#include <limits>
#include <type_traits>
namespace std {
template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) {
constexpr int __diff = _Nd_u - _Nd;
return __builtin_clz(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) {
constexpr int __diff = _Nd_ul - _Nd;
return __builtin_clzl(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) {
constexpr int __diff = _Nd_ull - _Nd;
return __builtin_clzll(__x) - __diff;
} else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
unsigned long long __high = __x >> _Nd_ull;
if (__high != 0) {
constexpr int __diff = (2 * _Nd_ull) - _Nd;
return __builtin_clzll(__high) - __diff;
}
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
return (_Nd - _Nd_ull) + __builtin_clzll(__low);
}
}
template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_ctz(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_ctzl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_ctzll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
if (__low != 0) return __builtin_ctzll(__low);
unsigned long long __high = __x >> _Nd_ull;
return __builtin_ctzll(__high) + _Nd_ull;
}
}
template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_popcount(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_popcountl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_popcountll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
unsigned long long __high = __x >> _Nd_ull;
return __builtin_popcountll(__low) + __builtin_popcountll(__high);
}
}
template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0 || __x == 1) return 1;
auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u));
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED
if (!__builtin_is_constant_evaluated()) {
__glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits);
}
#endif
using __promoted_type = decltype(__x << 1);
if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) {
const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2;
__shift_exponent |= (__shift_exponent & _Nd) << __extra_exp;
}
return (_Tp)1u << __shift_exponent;
}
template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1)));
}
template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
return _Nd - __countl_zero(__x);
}
} // namespace std
#endif
#endif
#line 2 "Library\\lib\\limits"
#line 4 "Library\\lib\\limits"
namespace workspace {
template <class _Tp> struct numeric_limits : std::numeric_limits<_Tp> {};
#ifdef __SIZEOF_INT128__
template <> struct numeric_limits<__uint128_t> {
constexpr static __uint128_t max() { return ~__uint128_t(0); }
constexpr static __uint128_t min() { return 0; }
};
template <> struct numeric_limits<__int128_t> {
constexpr static __int128_t max() {
return numeric_limits<__uint128_t>::max() >> 1;
}
constexpr static __int128_t min() { return -max() - 1; }
};
#endif
} // namespace workspace
#line 16 "Library\\lib\\alias"
namespace workspace {
constexpr static char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128-bit integer is not available.
#endif
namespace _alias_impl {
template <class> struct first_arg { using type = void; };
template <class _Tp, class = void> struct parse_comp : first_arg<_Tp> {};
template <class _Tp>
struct parse_comp<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
} // namespace _alias_impl
template <class _Tp = void, class _Compare = std::less<_Tp>>
decltype(auto) make_priority_queue(_Compare __x = _Compare()) noexcept {
using type = std::conditional_t<
std::is_void<_Tp>::value,
std::decay_t<typename _alias_impl::parse_comp<_Compare>::type>, _Tp>;
return std::priority_queue<type, std::vector<type>, _Compare>(__x);
}
template <class _Tp = void, class _Compare = std::less<_Tp>>
decltype(auto) make_set(_Compare __x = _Compare()) noexcept {
using type = std::conditional_t<
std::is_void<_Tp>::value,
std::decay_t<typename _alias_impl::parse_comp<_Compare>::type>, _Tp>;
return std::set<type, _Compare>(__x);
}
template <class _Key, class _Mapped, class _Compare = std::less<_Key>>
decltype(auto) make_map(_Compare __x = _Compare()) noexcept {
return std::map<_Key, _Mapped, _Compare>(__x);
}
template <class _T1, class _T2,
typename = decltype(std::declval<const _T2 &>() <
std::declval<const _T1 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y) noexcept {
return __y < __x ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T2 &>(), std::declval<const _T1 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept {
return *std::min_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::min_element(__x.begin(), __x.end(), __comp);
}
template <class _T1, class _T2,
typename = decltype(std::declval<const _T1 &>() <
std::declval<const _T2 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y) noexcept {
return __x < __y ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T1 &>(), std::declval<const _T2 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept {
return *std::max_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::max_element(__x.begin(), __x.end(), __comp);
}
template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept {
return std::__countr_zero(__x);
}
template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept {
return std::__bit_width(__x) - 1;
}
} // namespace workspace
#line 2 "Library\\lib\\cxx20"
/*
* @file cxx20
* @brief C++20 Features
*/
#line 9 "Library\\lib\\cxx20"
#if __cplusplus <= 201703L
#include <algorithm>
#include <vector>
namespace std {
/**
* @brief Erase the elements of a container that do not satisfy the condition.
* @param __cont Container.
* @param __pred Predicate.
* @return Number of the erased elements.
*/
template <typename _Tp, typename _Alloc, typename _Predicate>
inline typename vector<_Tp, _Alloc>::size_type erase_if(
vector<_Tp, _Alloc> &__cont, _Predicate __pred) {
const auto __osz = __cont.size();
__cont.erase(remove_if(__cont.begin(), __cont.end(), __pred), __cont.end());
return __osz - __cont.size();
}
/**
* @brief Erase the elements of a container that are equal to the given value.
* @param __cont Container.
* @param __value Value.
* @return Number of the erased elements.
*/
template <typename _Tp, typename _Alloc, typename _Up>
inline typename vector<_Tp, _Alloc>::size_type erase(
vector<_Tp, _Alloc> &__cont, const _Up &__value) {
const auto __osz = __cont.size();
__cont.erase(remove(__cont.begin(), __cont.end(), __value), __cont.end());
return __osz - __cont.size();
}
} // namespace std
#endif
#line 1 "Library\\lib\\direct"
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 2 "Library\\src\\opt\\binary_search.hpp"
/**
* @file binary_search.hpp
* @brief Binary Search
*/
#line 12 "Library\\src\\opt\\binary_search.hpp"
namespace workspace {
namespace _impl {
template <class _Iter, class _Pred>
_Iter discrete_binary_search(_Iter __first, _Iter __last, _Pred &&__pred,
bool __crit) {
if (__first < __last)
while (1 < __last - __first) {
_Iter __mid = __first + ((__last - __first) >> 1);
(__pred(__mid) == __crit ? __first : __last) = __mid;
}
else
while (1 < __first - __last) {
_Iter __mid = __last + ((__first - __last) >> 1);
(__pred(__mid) == __crit ? __first : __last) = __mid;
}
return __first;
}
template <class _Real, class _Pred>
_Real continuous_binary_search(_Real __first, _Real __last, _Real __eps,
_Pred &&__pred, bool __crit) {
if (__first < __last)
for (auto __loop = std::numeric_limits<_Real>::digits;
__first + __eps < __last && __loop; --__loop) {
_Real __mid = (__first + __last) / 2;
(__pred(__mid) == __crit ? __first : __last) = __mid;
}
else
for (auto __loop = std::numeric_limits<_Real>::digits;
__last + __eps < __first && __loop; --__loop) {
_Real __mid = (__first + __last) / 2;
(__pred(__mid) == __crit ? __first : __last) = __mid;
}
return __first;
}
} // namespace _impl
/**
* @brief Binary search on a discrete range.
*
* @param __first Inclusive endpoint
* @param __last Exclusive endpoint
* @param __pred Predicate
* @return Return __x s.t. `__pred(__x) == __pred(__first)` and `__pred(__x) !=
* __pred(__x +/- 1)`. The sign is `+` iff `__first < __last`.
*/
template <class _Iter, class _Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Iter>())),
bool>::value,
_Iter>::type
binary_search(_Iter __first, _Iter __last, _Pred &&__pred) {
assert(__first != __last);
return _impl::discrete_binary_search(
__first, __last, std::forward<_Pred>(__pred), __pred(__first));
}
/**
* @brief Binary search on the real number line.
* @param __first __pred(__first) is true
* @param __last __pred(__last) is false
* @param eps the error tolerance
* @param __pred the predicate
* @return the boundary point
*/
template <class _Real, class _Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Real>())),
bool>::value,
_Real>::type
binary_search(_Real __first, _Real __last, _Real __eps, _Pred &&__pred) {
assert(__first != __last);
return _impl::continuous_binary_search(
__first, __last, __eps, std::forward<_Pred>(__pred), __pred(__first));
}
/**
* @brief Parallel binary search on discrete ranges.
* @param ends a vector of pairs; __pred(first) is true, __pred(second) is false
* @param __pred the predicate
* @return the closest points to (second) where __pred is true
*/
template <class Array,
class _Iter = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class _Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<_Pred>()(std::declval<std::vector<_Iter>>())[0]),
bool>::value,
std::vector<_Iter>>::type
parallel_binary_search(Array ends, _Pred __pred) {
std::vector<_Iter> mids(std::size(ends));
for (;;) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const _Iter &__first = std::get<0>(ends[i]);
const _Iter &__last = std::get<1>(ends[i]);
const _Iter mid(
__first + typename std::make_signed<decltype(__last - __first)>::type(
__last - __first) /
2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
const auto res = __pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
/**
* @brief Parallel binary search on the real number line.
* @param ends a vector of pairs; __pred(first) is true, __pred(second) is false
* @param eps the error tolerance
* @param __pred the predicate
* @return the boundary points
*/
template <class Array,
class _Real = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class _Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<_Pred>()(std::declval<std::vector<_Real>>())[0]),
bool>::value,
std::vector<_Real>>::type
parallel_binary_search(Array ends, const _Real eps, _Pred __pred) {
std::vector<_Real> mids(std::size(ends));
for (auto loops = 0; loops != std::numeric_limits<_Real>::digits; ++loops) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const _Real __first = std::get<0>(ends[i]);
const _Real __last = std::get<1>(ends[i]);
if (__first + eps < __last || __last + eps < __first) {
all_found = false;
mids[i] = (__first + __last) / 2;
}
}
if (all_found) break;
const auto res = __pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
} // namespace workspace
#line 2 "Library\\src\\opt\\exponential_search.hpp"
/**
* @file exponential_search.hpp
* @brief Exponential Search
*/
#line 9 "Library\\src\\opt\\exponential_search.hpp"
namespace workspace {
/**
* @brief Exponential search on a discrete range.
*
* @param __first Inclusive endpoint
* @param __last Exclusive endpoint
* @param __pred Predicate
* @return Return __x s.t. `__pred(__x) == __pred(__first)` and `__pred(__x) !=
* __pred(__x +/- 1)`. The sign is `+` iff `__first < __last`.
*/
template <class _Iter, class _Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Iter>())),
bool>::value,
_Iter>::type
exponential_search(_Iter __first, _Iter __last, _Pred &&__pred) {
assert(__first != __last);
bool __crit = __pred(__first);
if (__first < __last) {
for (decltype(__last - __first) __step = 1; __step < __last - __first;
__step <<= 1)
if (__pred(__first += __step) != __crit)
return _impl::discrete_binary_search(
__first - __step, __first, std::forward<_Pred>(__pred), __crit);
}
else {
for (decltype(__first - __last) __step = 1; __step < __first - __last;
__step <<= 1)
if (__pred(__first -= __step) != __crit)
return _impl::discrete_binary_search(
__first + __step, __first, std::forward<_Pred>(__pred), __crit);
}
return _impl::discrete_binary_search(__first, __last,
std::forward<_Pred>(__pred), __crit);
}
/**
* @brief Exponential search on the real number line.
*
* @param __first Endpoint
* @param __last Endpoint
* @param __eps Error tolerance
* @param __pred Predicate
* @return A boundary point `__x` s.t. `__pred(__x) == __pred(__first)`.
*/
template <class _Real, class _Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Real>())),
bool>::value,
_Real>::type
exponential_search(_Real __first, _Real __last, _Real __eps, _Pred &&__pred) {
bool __crit = __pred(__first);
if (__first < __last) {
for (_Real __step = __eps; __step < __last - __first; __step += __step)
if (__pred(__first += __step) != __crit)
return _impl::continuous_binary_search(__first - __step, __first, __eps,
std::forward<_Pred>(__pred),
__crit);
}
else {
for (_Real __step = __eps; __step < __first - __last; __step += __step)
if (__pred(__first -= __step) != __crit)
return _impl::continuous_binary_search(__first + __step, __first, __eps,
std::forward<_Pred>(__pred),
__crit);
}
return _impl::continuous_binary_search(__first, __last, __eps,
std::forward<_Pred>(__pred), __crit);
}
} // namespace workspace
#line 2 "Library\\src\\opt\\golden_section.hpp"
/**
* @file golden_section.hpp
* @brief Golden Section
*/
#include <type_traits>
#line 2 "Library\\src\\algebra\\system\\operation.hpp"
/**
* @file operation.hpp
* @brief Operation Traits
*/
#line 9 "Library\\src\\algebra\\system\\operation.hpp"
namespace workspace {
// Unary `+`
template <class _Tp>
using require_unary_plus = std::enable_if_t<
std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_plus : std::false_type {};
template <class _Tp>
struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {};
// Unary `-`
template <class _Tp>
using require_unary_minus = std::enable_if_t<
std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_minus : std::false_type {};
template <class _Tp>
struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {};
// Binary `+`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_plus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() +
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_plus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `-`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_minus = std::__void_t<decltype(
std::declval<const _Tp1 &>() - std::declval<const _Tp2 &>())>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_minus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `*`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_multiplies =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() *
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_multiplies : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>>
: std::true_type {};
// Binary `/`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_divides =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() /
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_divides : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>>
: std::true_type {};
// Binary `%`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_modulus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() %
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_modulus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>>
: std::true_type {};
} // namespace workspace
#line 11 "Library\\src\\opt\\golden_section.hpp"
namespace workspace {
/**
* @brief Golden section search.
*/
template <class _Iterator, class _Function>
std::enable_if_t<has_binary_minus<_Iterator>::value, _Iterator> golden_section(
_Iterator __first, _Iterator __last, _Function &&__f) {
if (__last - __first < 2) return __first;
decltype(__last - __first) __a{1}, __b{2};
while (__a + __b <= __last - __first) __b ^= __a ^= __b ^= __a += __b;
auto __f1 = __f(__last - __b), __f2 = __f(__last - __a);
while (__a != 1) {
__a ^= __b ^= __a ^= __b -= __a;
if (__f2 < __f1)
__f1 = __f2, __f2 = __f(__last - __a);
else if ((__last -= __b) - __first < __b)
__a ^= __b ^= __a ^= __b -= __a, __f2 = __f(__last - __a);
else
__f2 = __f1, __f1 = __f(__last - __b);
}
return __f1 < __f2 ? __last - __b : __last - __a;
}
} // namespace workspace
#line 2 "Library\\src\\opt\\trinary_search.hpp"
/*
* @file trinary_search.hpp
* @brief Trinary Search
*/
#line 10 "Library\\src\\opt\\trinary_search.hpp"
namespace workspace {
/*
* @brief Trinary search on discrete range.
* @param first Left end, inclusive
* @param last Right end, exclusive
* @param comp Compare function
* @return Local minimal point.
*/
template <class Iter, class Comp>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Comp>()(std::declval<Iter>(),
std::declval<Iter>())),
bool>::value,
Iter>::type
trinary_search(Iter first, Iter last, Comp comp) {
assert(first < last);
typename std::make_signed<decltype(last - first)>::type dist(last - first);
while (2 < dist) {
Iter left(first + dist / 3), right(first + dist * 2 / 3);
if (comp(left, right))
last = right, dist = (dist + dist) / 3;
else
first = left, dist -= dist / 3;
}
if (1 < dist && comp(first + 1, first)) ++first;
return first;
}
/*
* @brief Trinary search on discrete range.
* @param first Left end, inclusive
* @param last Right end, exclusive
* @param func Function
* @return Local minimal point.
*/
template <class Iter, class Func>
typename std::enable_if<
std::is_same<decltype(std::declval<Func>()(std::declval<Iter>()), nullptr),
std::nullptr_t>::value,
Iter>::type
trinary_search(Iter const &first, Iter const &last, Func func) {
return trinary_search(first, last, [&](Iter const &__i, Iter const &__j) {
return func(__i) < func(__j);
});
}
/*
* @brief Trinary search on the real number line.
* @param first Left end
* @param last Right end
* @param eps Error tolerance
* @param comp Compare function
* @return Local minimal point.
*/
template <class Real, class Comp>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Comp>()(std::declval<Real>(),
std::declval<Real>())),
bool>::value,
Real>::type
trinary_search(Real first, Real last, Real const &eps, Comp comp) {
assert(first < last);
while (eps < last - first) {
Real left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};
if (comp(left, right))
last = right;
else
first = left;
}
return first;
}
/*
* @brief Trinary search on the real number line.
* @param first Left end
* @param last Right end
* @param eps Error tolerance
* @param func Function
* @return Local minimal point.
*/
template <class Real, class Func>
typename std::enable_if<
std::is_same<decltype(std::declval<Func>()(std::declval<Real>()), nullptr),
std::nullptr_t>::value,
Real>::type
trinary_search(Real const &first, Real const &last, Real const &eps,
Func func) {
return trinary_search(
first, last, eps,
[&](Real const &__i, Real const &__j) { return func(__i) < func(__j); });
}
} // namespace workspace
#line 2 "Library\\src\\sys\\call_once.hpp"
/**
* @file call_once.hpp
* @brief Call Once
*/
#line 9 "Library\\src\\sys\\call_once.hpp"
namespace workspace {
/**
* @brief Call once.
*/
template <class _F> void call_once(_F &&__f) {
static std::unordered_set<void *> __called;
if (__called.count(std::addressof(__f))) return;
__called.emplace(std::addressof(__f));
__f();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\clock.hpp"
/*
* @fn clock.hpp
* @brief Clock
*/
#line 9 "Library\\src\\sys\\clock.hpp"
namespace workspace {
using namespace std::chrono;
namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
} // namespace internal
/*
* @fn elapsed
* @return elapsed time of the program
*/
int64_t elapsed() {
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - internal::start_time).count();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\ejection.hpp"
/**
* @file ejection.hpp
* @brief Ejection
*/
#line 9 "Library\\src\\sys\\ejection.hpp"
namespace workspace {
namespace internal {
struct ejection {
bool exit = 0;
};
} // namespace internal
/**
* @brief eject from a try block, throw nullptr
* @param arg output
*/
template <class Tp> void eject(Tp const &arg) {
std::cout << arg << "\n";
throw internal::ejection{};
}
void exit() { throw internal::ejection{true}; }
} // namespace workspace
#line 2 "Library\\src\\sys\\iteration.hpp"
/**
* @file iteration.hpp
* @brief Case Iteration
*/
#line 9 "Library\\src\\sys\\iteration.hpp"
#line 11 "Library\\src\\sys\\iteration.hpp"
namespace workspace {
void main();
struct {
// 1-indexed
unsigned current{0};
unsigned total{1};
void read() { (std::cin >> total).ignore(); }
int iterate() {
static bool once = false;
assert(!once);
once = true;
while (current++ < total) {
try {
main();
} catch (internal::ejection const &status) {
if (status.exit) break;
}
}
return 0;
}
} case_info;
} // namespace workspace
#line 2 "Library\\lib\\utils"
// #include "src/utils/cached.hpp"
#line 2 "Library\\src\\utils\\cat.hpp"
/**
* @file cat.hpp
* @brief Cat
*/
#line 9 "Library\\src\\utils\\cat.hpp"
namespace workspace {
/**
* @brief Concatenate two sequences.
*
* @param __c1
* @param __c2
* @return Concatenated sequence.
*/
template <class _C1, class _C2>
constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2) noexcept {
auto __c = std::forward<_C1>(__c1);
if constexpr (std::is_rvalue_reference<decltype(__c2)>::value)
__c.insert(std::end(__c), std::move_iterator(std::begin(__c2)),
std::move_iterator(std::end(__c2)));
else
__c.insert(std::end(__c), std::cbegin(__c2), std::cend(__c2));
return __c;
}
/**
* @return Concatenated sequence.
*/
template <class _C1, class _C2, class... _Args>
constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2,
_Args &&...__args) noexcept {
return cat(cat(std::forward<_C1>(__c1), std::forward<_C2>(__c2)),
std::forward<_Args>(__args)...);
}
} // namespace workspace
#line 2 "Library\\src\\utils\\chval.hpp"
/**
* @file chval.hpp
* @brief Change Less/Greater
*/
#line 9 "Library\\src\\utils\\chval.hpp"
namespace workspace {
/**
* @brief Substitute __y for __x if __y < __x.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T2>() < std::declval<_T1 &>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y) noexcept {
return __y < __x ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __x < __y.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T1 &>() < std::declval<_T2>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y) noexcept {
return __x < __y ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__y, __x) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T2>(),
std::declval<_T1 &>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__x, __y) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T1 &>(),
std::declval<_T2>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false;
}
} // namespace workspace
#line 1 "Library\\src\\utils\\compare.hpp"
/**
* @file compare.hpp
* @brief Compare
*/
#line 2 "Library\\src\\utils\\sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#line 11 "Library\\src\\utils\\sfinae.hpp"
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp &>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container &>()))>::type;
template <class _Tp, class = std::nullptr_t>
struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)>
: std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
} // namespace workspace
#line 7 "Library\\src\\utils\\compare.hpp"
namespace workspace {
/**
* @brief Compare 2 points by their value of `atan2`.
*
* @return
*/
template <class _Tp>
bool compare_arg(const _Tp &__p1, const _Tp &__p2) noexcept {
const auto &[__x1, __y1] = __p1;
const auto &[__x2, __y2] = __p2;
using value_type = std::decay_t<decltype(__x1)>;
using mul_type = typename multiplicable<value_type>::type;
if (__y1 == value_type(0))
return value_type(0) <= __x1 &&
(value_type(0) < __y2 ||
(__y2 == value_type(0) && __x2 < value_type(0)));
return value_type(0) < __y1
? value_type(0) <= __y2 &&
mul_type(__y1) * __x2 < mul_type(__x1) * __y2
: value_type(0) <= __y2 ||
mul_type(__y1) * __x2 < mul_type(__x1) * __y2;
}
} // namespace workspace
#line 6 "Library\\lib\\utils"
// #include "src/utils/fixed_point.hpp"
// #include "src/utils/hash.hpp"
// #include "src/utils/io/istream.hpp"
// #include "src/utils/io/ostream.hpp"
// #include "src/utils/io/read.hpp"
#line 2 "Library\\src\\utils\\grid\\motion.hpp"
/**
* @file motion.hpp
* @brief Motion
*/
#line 9 "Library\\src\\utils\\grid\\motion.hpp"
namespace workspace {
/**
* @brief Transpose.
*
* @param __grid
*/
template <class _Grid,
typename = decltype(std::declval<std::decay_t<_Grid>>()[0].resize(0))>
constexpr decltype(auto) transpose(_Grid &&__grid) noexcept {
auto __h = std::size(__grid), __w = std::size(__grid[0]);
std::decay_t<_Grid> __t(__w);
for (auto &&__r : __t) __r.resize(__h);
for (size_t __i = 0; __i != __h; ++__i)
for (size_t __j = 0; __j != __w; ++__j)
if constexpr (std::is_rvalue_reference<decltype(__grid)>::value)
__t[__j][__i] = std::move(__grid[__i][__j]);
else
__t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
*
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(const _Tp (&__grid)[_Rows][_Cols]) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
*
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(_Tp(&&__grid)[_Rows][_Cols]) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j)
__t[__j][__i] = std::move(__grid[__i][__j]);
return __t;
}
/**
* @brief Transpose.
*
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(
const std::array<std::array<_Tp, _Cols>, _Rows> &__grid) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
*
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(
std::array<std::array<_Tp, _Cols>, _Rows> &&__grid) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j)
__t[__j][__i] = std::move(__grid[__i][__j]);
return __t;
}
/**
* @brief Roll the grid counter-clockwise.
*
* @param __grid
* @return
*/
template <class _Grid> decltype(auto) roll_ccw(_Grid &&__grid) noexcept {
if constexpr (std::is_rvalue_reference<decltype(__grid)>::value) {
auto __t = transpose(std::move(__grid));
std::reverse(std::begin(__t), std::end(__t));
return __t;
}
else {
auto __t = transpose(__grid);
std::reverse(std::begin(__t), std::end(__t));
return __t;
}
}
/**
* @brief Roll the grid clockwise.
*
* @param __grid
* @return
*/
template <class _Grid> decltype(auto) roll_cw(_Grid &&__grid) noexcept {
if constexpr (std::is_rvalue_reference<decltype(__grid)>::value) {
std::reverse(std::begin(__grid), std::end(__grid));
return transpose(std::move(__grid));
}
else {
auto __t = transpose(__grid);
for (auto &&__r : __t) std::reverse(std::begin(__r), std::end(__r));
return __t;
}
}
} // namespace workspace
#line 2 "Library\\src\\utils\\io\\setup.hpp"
/**
* @file setup.hpp
* @brief I/O Setup
*/
#line 10 "Library\\src\\utils\\io\\setup.hpp"
namespace workspace {
/**
* @brief Setup I/O.
* @param __n Standard output precision
*/
void io_setup(int __n) {
std::cin.tie(0)->sync_with_stdio(0);
std::cout << std::fixed << std::setprecision(__n);
#ifdef _buffer_check
atexit([] {
char bufc;
if (std::cin >> bufc)
std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
} // namespace workspace
#line 2 "Library\\src\\utils\\iterator\\category.hpp"
/*
* @file category.hpp
* @brief Iterator Category
*/
#line 10 "Library\\src\\utils\\iterator\\category.hpp"
namespace workspace {
/*
* @tparam Tuple Tuple of iterator types
*/
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
using type = typename std::common_type<
typename common_iterator_category<Tuple, N - 1>::type,
typename std::iterator_traits<typename std::tuple_element<
N, Tuple>::type>::iterator_category>::type;
};
template <class Tuple> struct common_iterator_category<Tuple, 0> {
using type = typename std::iterator_traits<
typename std::tuple_element<0, Tuple>::type>::iterator_category;
};
} // namespace workspace
#line 2 "Library\\src\\utils\\iterator\\reverse.hpp"
/*
* @file reverse_iterator.hpp
* @brief Reverse Iterator
*/
#if __cplusplus >= 201703L
#include <iterator>
#include <optional>
namespace workspace {
/*
* @class reverse_iterator
* @brief Wrapper class for `std::reverse_iterator`.
* @see http://gcc.gnu.org/PR51823
*/
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
using base_std = std::reverse_iterator<Iterator>;
std::optional<typename base_std::value_type> deref;
public:
using base_std::reverse_iterator;
constexpr typename base_std::reference operator*() noexcept {
if (!deref) {
Iterator tmp = base_std::current;
deref = *--tmp;
}
return deref.value();
}
constexpr reverse_iterator &operator++() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator &operator--() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator++(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator--(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
};
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\make_vector.hpp"
/**
* @file make_vector.hpp
* @brief Multi-dimensional Vector
*/
#if __cplusplus >= 201703L
#include <tuple>
#include <vector>
namespace workspace {
/**
* @brief Make a multi-dimensional vector.
*
* @param __dim Dimension
* @param __x Initial value
*/
template <typename _Tp, class _Dim, size_t _Nm>
constexpr decltype(auto) make_vector([[maybe_unused]] _Dim *__dim,
const _Tp &__x = _Tp()) {
static_assert(std::is_convertible<_Dim, size_t>::value);
if constexpr (_Nm)
return std::vector(*__dim,
make_vector<_Tp, _Dim, _Nm - 1>(std::next(__dim), __x));
else
return __x;
}
/**
* @brief Make a multi-dimensional vector.
*
* @param __dim Dimension
* @param __x Initial value
*/
template <typename _Tp, class _Dim, size_t _Nm>
constexpr decltype(auto) make_vector(const _Dim (&__dim)[_Nm],
const _Tp &__x = _Tp()) {
return make_vector<_Tp, _Dim, _Nm>((_Dim *)__dim, __x);
}
/**
* @brief Make a multi-dimensional vector.
*
* @param __dim Dimension
* @param __x Initial value
*/
template <typename _Tp, class _Dim, size_t _Nm = 0>
constexpr decltype(auto) make_vector([[maybe_unused]] const _Dim &__dim,
const _Tp &__x = _Tp()) {
if constexpr (_Nm == std::tuple_size<_Dim>::value)
return __x;
else {
static_assert(
std::is_convertible<std::tuple_element_t<_Nm, _Dim>, size_t>::value);
return std::vector(std::get<_Nm>(__dim),
make_vector<_Tp, _Dim, _Nm + 1>(__dim, __x));
}
}
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\py-like\\enumerate.hpp"
/**
* @file enumerate.hpp
* @brief Enumerate
*/
#line 2 "Library\\src\\utils\\py-like\\range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 9 "Library\\src\\utils\\py-like\\range.hpp"
#line 2 "Library\\src\\utils\\py-like\\reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#include <initializer_list>
#line 10 "Library\\src\\utils\\py-like\\reversed.hpp"
namespace workspace {
namespace _reversed_impl {
template <class _Container> class reversed {
_Container __cont;
public:
constexpr reversed(_Container &&__cont) noexcept : __cont(__cont) {}
constexpr decltype(auto) begin() noexcept { return std::rbegin(__cont); }
constexpr decltype(auto) begin() const noexcept {
return std::rbegin(__cont);
}
constexpr decltype(auto) end() noexcept { return std::rend(__cont); }
constexpr decltype(auto) end() const noexcept { return std::rend(__cont); }
constexpr decltype(auto) size() const noexcept { return std::size(__cont); }
};
} // namespace _reversed_impl
template <class _Container>
constexpr decltype(auto) reversed(_Container &&__cont) noexcept {
return _reversed_impl::reversed<_Container>{std::forward<_Container>(__cont)};
}
template <class _Tp>
constexpr decltype(auto) reversed(
std::initializer_list<_Tp> &&__cont) noexcept {
return _reversed_impl::reversed<std::initializer_list<_Tp>>{
std::forward<std::initializer_list<_Tp>>(__cont)};
}
} // namespace workspace
#line 12 "Library\\src\\utils\\py-like\\range.hpp"
#if __cplusplus >= 201703L
namespace workspace {
template <class _Index> class range {
_Index __first, __last;
public:
class iterator {
_Index current;
public:
using difference_type = std::ptrdiff_t;
using value_type = _Index;
using reference = typename std::add_const<_Index>::type &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
constexpr iterator(const _Index &__i = _Index()) noexcept : current(__i) {}
constexpr bool operator==(const iterator &__x) const noexcept {
return current == __x.current;
}
constexpr bool operator!=(const iterator &__x) const noexcept {
return current != __x.current;
}
constexpr bool operator<(const iterator &__x) const noexcept {
return current < __x.current;
}
constexpr bool operator<=(const iterator &__x) const noexcept {
return current <= __x.current;
}
constexpr bool operator>(const iterator &__x) const noexcept {
return current > __x.current;
}
constexpr bool operator>=(const iterator &__x) const noexcept {
return current >= __x.current;
}
constexpr iterator &operator++() noexcept {
++current;
return *this;
}
constexpr iterator &operator++(int) noexcept {
auto __tmp = *this;
++current;
return __tmp;
}
constexpr iterator &operator--() noexcept {
--current;
return *this;
}
constexpr iterator &operator--(int) noexcept {
auto __tmp = *this;
--current;
return __tmp;
}
constexpr difference_type operator-(const iterator &__x) const noexcept {
return current - __x.current;
}
constexpr iterator &operator+=(difference_type __x) noexcept {
current += __x;
return *this;
}
constexpr iterator operator+(difference_type __x) const noexcept {
return iterator(*this) += __x;
}
constexpr iterator &operator-=(difference_type __x) noexcept {
current -= __x;
return *this;
}
constexpr iterator operator-(difference_type __x) const noexcept {
return iterator(*this) -= __x;
}
constexpr reference operator*() const noexcept { return current; }
};
constexpr range(_Index __first, _Index __last) noexcept
: __first(__first), __last(__last) {}
constexpr range(_Index __last) noexcept : __first(), __last(__last) {}
constexpr iterator begin() const noexcept { return iterator{__first}; }
constexpr iterator end() const noexcept { return iterator{__last}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>(end());
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>(begin());
}
constexpr size_t size() const noexcept {
return std::distance(__first, __last);
}
};
template <class... _Args>
constexpr decltype(auto) rrange(_Args &&...__args) noexcept {
return reversed(range(std::forward<_Args>(__args)...));
}
template <class _Container>
constexpr decltype(auto) iterate(_Container &&__cont) noexcept {
return range(std::begin(__cont), std::end(__cont));
}
template <class _Container>
constexpr decltype(auto) riterate(_Container &&__cont) noexcept {
return range(std::rbegin(__cont), std::rend(__cont));
}
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\py-like\\zip.hpp"
/**
* @file zip.hpp
* @brief Zip
*/
#line 11 "Library\\src\\utils\\py-like\\zip.hpp"
#line 14 "Library\\src\\utils\\py-like\\zip.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace internal {
template <class> struct zipped_iterator;
template <class...> struct zipped_iterator_tuple;
template <class... Args> class zipped {
using ref_tuple = std::tuple<Args...>;
ref_tuple args;
template <size_t N = 0> constexpr auto begin_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))),
begin_cat<N + 1>());
} else
return std::tuple<>();
}
template <size_t N = 0> constexpr auto end_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::end(std::get<N>(args))),
end_cat<N + 1>());
} else
return std::tuple<>();
}
public:
constexpr zipped(Args &&...args) noexcept : args(args...) {}
class iterator {
using base_tuple = typename zipped_iterator_tuple<Args...>::type;
public:
using iterator_category =
typename common_iterator_category<base_tuple>::type;
using difference_type = std::ptrdiff_t;
using value_type = zipped_iterator<base_tuple>;
using reference = zipped_iterator<base_tuple> &;
using pointer = iterator;
protected:
value_type current;
template <size_t N = 0>
constexpr bool equal(const iterator &rhs) const noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
return std::get<N>(current) == std::get<N>(rhs.current) ||
equal<N + 1>(rhs);
} else
return false;
}
template <size_t N = 0> constexpr void increment() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
++std::get<N>(current);
increment<N + 1>();
}
}
template <size_t N = 0> constexpr void decrement() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
--std::get<N>(current);
decrement<N + 1>();
}
}
template <size_t N = 0>
constexpr void advance(difference_type __d) noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
std::get<N>(current) += __d;
advance<N + 1>(__d);
}
}
public:
constexpr iterator() noexcept = default;
constexpr iterator(base_tuple const ¤t) noexcept : current(current) {}
constexpr bool operator==(const iterator &rhs) const noexcept {
return equal(rhs);
}
constexpr bool operator!=(const iterator &rhs) const noexcept {
return !equal(rhs);
}
constexpr iterator &operator++() noexcept {
increment();
return *this;
}
constexpr iterator &operator--() noexcept {
decrement();
return *this;
}
constexpr bool operator<(const iterator &rhs) const noexcept {
return std::get<0>(current) < std::get<0>(rhs.current);
}
constexpr bool operator<=(const iterator &rhs) const noexcept {
return std::get<0>(current) <= std::get<0>(rhs.current);
}
constexpr iterator &operator+=(difference_type __d) noexcept {
advance(__d);
return *this;
}
constexpr iterator &operator-=(difference_type __d) noexcept {
advance(-__d);
return *this;
}
constexpr iterator operator+(difference_type __d) const noexcept {
return iterator{*this} += __d;
}
constexpr iterator operator-(difference_type __d) const noexcept {
return iterator{*this} -= __d;
}
constexpr difference_type operator-(const iterator &rhs) const noexcept {
return std::get<0>(current) - std::get<0>(rhs.current);
}
constexpr reference operator*() noexcept { return current; }
};
constexpr iterator begin() const noexcept { return iterator{begin_cat()}; }
constexpr iterator end() const noexcept { return iterator{end_cat()}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>{end()};
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>{begin()};
}
};
template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> {
using type = decltype(std::tuple_cat(
std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(),
std::declval<typename zipped_iterator_tuple<Args...>::type>()));
};
template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; };
template <class Iter_tuple> struct zipped_iterator : Iter_tuple {
constexpr zipped_iterator(Iter_tuple const &__t) noexcept
: Iter_tuple::tuple(__t) {}
constexpr zipped_iterator(zipped_iterator const &__t) = default;
constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default;
// Avoid move initialization.
constexpr zipped_iterator(zipped_iterator &&__t)
: zipped_iterator(static_cast<zipped_iterator const &>(__t)) {}
// Avoid move assignment.
zipped_iterator &operator=(zipped_iterator &&__t) {
return operator=(static_cast<zipped_iterator const &>(__t));
}
template <size_t N>
friend constexpr auto &get(zipped_iterator<Iter_tuple> const &__z) noexcept {
return *std::get<N>(__z);
}
template <size_t N>
friend constexpr auto get(zipped_iterator<Iter_tuple> &&__z) noexcept {
return *std::get<N>(__z);
}
};
} // namespace internal
} // namespace workspace
namespace std {
template <size_t N, class Iter_tuple>
struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> {
using type = typename remove_reference<typename iterator_traits<
typename tuple_element<N, Iter_tuple>::type>::reference>::type;
};
template <class Iter_tuple>
struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>>
: tuple_size<Iter_tuple> {};
} // namespace std
namespace workspace {
template <class... Args> constexpr auto zip(Args &&...args) noexcept {
return internal::zipped<Args...>(std::forward<Args>(args)...);
}
template <class... Args>
constexpr auto zip(std::initializer_list<Args> const &...args) noexcept {
return internal::zipped<const std::initializer_list<Args>...>(args...);
}
} // namespace workspace
#endif
#line 10 "Library\\src\\utils\\py-like\\enumerate.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace _enumerate_impl {
constexpr size_t min_size() noexcept { return SIZE_MAX; }
template <class _Container, class... _Args>
constexpr size_t min_size(_Container const &__cont,
_Args &&...__args) noexcept {
return std::min(std::size(__cont), min_size(std::forward<_Args>(__args)...));
}
} // namespace _enumerate_impl
template <class... _Args>
constexpr decltype(auto) enumerate(_Args &&...__args) noexcept {
return zip(range(_enumerate_impl::min_size(__args...)),
std::forward<_Args>(__args)...);
}
template <class... _Args>
constexpr decltype(auto) enumerate(
std::initializer_list<_Args> const &...__args) noexcept {
return zip(range(_enumerate_impl::min_size(__args...)),
std::vector(__args)...);
}
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\rand\\rng.hpp"
/**
* @file rng.hpp
* @brief Random Number Generator
*/
#line 9 "Library\\src\\utils\\rand\\rng.hpp"
namespace workspace {
template <typename _Arithmetic>
using uniform_distribution = typename std::conditional<
std::is_integral<_Arithmetic>::value,
std::uniform_int_distribution<_Arithmetic>,
std::uniform_real_distribution<_Arithmetic>>::type;
template <typename _Arithmetic, class _Engine = std::mt19937>
class random_number_generator : uniform_distribution<_Arithmetic> {
using base = uniform_distribution<_Arithmetic>;
_Engine __engine;
public:
random_number_generator(_Arithmetic __min, _Arithmetic __max)
: base(__min, __max), __engine(std::random_device{}()) {}
random_number_generator(_Arithmetic __max = 1)
: random_number_generator(0, __max) {}
random_number_generator(typename base::param_type const &__param)
: base(__param), __engine(std::random_device{}()) {}
decltype(auto) operator()() noexcept { return base::operator()(__engine); }
};
} // namespace workspace
#line 2 "Library\\src\\utils\\rand\\shuffle.hpp"
/**
* @file shuffle.hpp
* @brief Shuffle
*/
#line 10 "Library\\src\\utils\\rand\\shuffle.hpp"
namespace workspace {
template <class _RAIter, class _Engine = std::mt19937>
void shuffle(_RAIter __first, _RAIter __last) {
static _Engine __engine(std::random_device{}());
std::shuffle(__first, __last, __engine);
}
} // namespace workspace
#line 2 "Library\\src\\utils\\rand\\tree.hpp"
#line 4 "Library\\src\\utils\\rand\\tree.hpp"
#line 6 "Library\\src\\utils\\rand\\tree.hpp"
namespace workspace {
auto random_tree(std::size_t __n) {
std::vector<std::pair<std::size_t, std::size_t>> __edges;
random_number_generator rng(std::size_t(0), __n);
for (std::size_t __i = 1; __i != __n; ++__i)
__edges.emplace_back(__i + 1, rng() % __i + 1);
return __edges;
}
} // namespace workspace
#line 2 "Library\\src\\utils\\round_div.hpp"
/*
* @file round_div.hpp
* @brief Round Integer Division
*/
#line 9 "Library\\src\\utils\\round_div.hpp"
#line 11 "Library\\src\\utils\\round_div.hpp"
namespace workspace {
/*
* @fn floor_div
* @brief floor of fraction.
* @param x the numerator
* @param y the denominator
* @return maximum integer z s.t. z <= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
floor_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? (x - y + 1) / y : x / y;
}
/*
* @fn ceil_div
* @brief ceil of fraction.
* @param x the numerator
* @param y the denominator
* @return minimum integer z s.t. z >= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
ceil_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? x / y : (x + y - 1) / y;
}
} // namespace workspace
#line 11 "other-workspace\\c.cc"
signed main() {
using namespace workspace;
io_setup(15);
/* given
case_info.read(); //*/
/* unspecified
case_info.total = -1; //*/
return case_info.iterate();
}
#line 2 "Library\\src\\number_theory\\least_factor.hpp"
/**
* @file least_factor.hpp
* @brief Least Prime Factor
*/
#line 10 "Library\\src\\number_theory\\least_factor.hpp"
#line 12 "Library\\src\\number_theory\\least_factor.hpp"
namespace workspace {
/**
* @brief Calculate the least prime factor for positive integers.
*
* @tparam N Range of calculation, exclusive
*/
template <unsigned N> class least_factor {
unsigned least[N], prime[N >> 1], n;
public:
least_factor() : least{}, prime{}, n{} {
for (auto i = 2u; i < N; ++i) {
if (!least[i]) prime[n++] = least[i] = i;
for (auto *p = prime; *p && *p <= least[i] && *p * i < N; ++p) {
least[*p * i] = *p;
}
}
}
/**
* @param x An integer with 0 < |x| < N
* @return Least prime factor of x
*/
template <typename int_type>
constexpr
typename std::enable_if<is_integral_ext<int_type>::value, int_type>::type
operator()(int_type x) const {
assert(x);
if (x < 0) x = -x;
assert((unsigned)x < N);
return least[x];
}
/**
* @brief Factorize
*
* @param x An integer with 0 < |x| < N
* @return Prime factors in ascending order.
*/
template <typename int_type>
constexpr typename std::enable_if<is_integral_ext<int_type>::value,
std::vector<int_type>>::type
factorize(int_type x) const {
assert(x);
if (x < 0) x = -x;
assert((unsigned)x < N);
std::vector<int_type> __p;
while (x != 1) {
__p.emplace_back(least[x]);
x /= least[x];
}
return __p;
}
/**
* @return Sorted list of prime numbers less than N
*/
const std::vector<unsigned> &primes() const {
static const std::vector<unsigned> prime_vector(prime, prime + n);
return prime_vector;
}
};
} // namespace workspace
#line 27 "other-workspace\\c.cc"
namespace workspace {
void main() {
// start here!
int n;
cin >> n;
bitset<50000001> bs;
i64 ans{};
for (i64 i : range<i64>(1, bs.size())) {
if (bs[i]) continue;
i64 j = 1;
i64 c = 0;
while (i * j * j <= n) {
bs[i * j * j] = 1;
++j;
++c;
}
ans += c * c;
}
cout << ans << "\n";
}
} // namespace workspace
jell