結果
問題 | No.1514 Squared Matching |
ユーザー | jell |
提出日時 | 2021-05-21 22:37:29 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 226 ms / 4,000 ms |
コード長 | 63,557 bytes |
コンパイル時間 | 4,139 ms |
コンパイル使用メモリ | 270,176 KB |
実行使用メモリ | 9,636 KB |
最終ジャッジ日時 | 2024-10-10 09:22:35 |
合計ジャッジ時間 | 10,045 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 99 ms
9,444 KB |
testcase_01 | AC | 225 ms
9,456 KB |
testcase_02 | AC | 99 ms
9,444 KB |
testcase_03 | AC | 98 ms
9,632 KB |
testcase_04 | AC | 99 ms
9,472 KB |
testcase_05 | AC | 99 ms
9,448 KB |
testcase_06 | AC | 101 ms
9,404 KB |
testcase_07 | AC | 123 ms
9,636 KB |
testcase_08 | AC | 221 ms
9,524 KB |
testcase_09 | AC | 205 ms
9,400 KB |
testcase_10 | AC | 213 ms
9,480 KB |
testcase_11 | AC | 219 ms
9,560 KB |
testcase_12 | AC | 222 ms
9,476 KB |
testcase_13 | AC | 224 ms
9,428 KB |
testcase_14 | AC | 225 ms
9,436 KB |
testcase_15 | AC | 226 ms
9,400 KB |
testcase_16 | AC | 225 ms
9,548 KB |
testcase_17 | AC | 224 ms
9,412 KB |
testcase_18 | AC | 224 ms
9,480 KB |
testcase_19 | AC | 225 ms
9,464 KB |
testcase_20 | AC | 225 ms
9,444 KB |
testcase_21 | AC | 224 ms
9,420 KB |
testcase_22 | AC | 123 ms
9,580 KB |
testcase_23 | AC | 148 ms
9,572 KB |
testcase_24 | AC | 174 ms
9,436 KB |
testcase_25 | AC | 200 ms
9,564 KB |
ソースコード
#line 1 "other-workspace\\c.cc" // #undef _GLIBCXX_DEBUG // #define NDEBUG #include <bits/extc++.h> #line 2 "Library\\lib\\alias" /** * @file alias * @brief Alias */ #line 13 "Library\\lib\\alias" #line 2 "Library\\lib\\bit" #if __cplusplus > 201703L #include <bit> #else #ifndef _GLIBCXX_BIT #define _GLIBCXX_BIT 1 #include <limits> #include <type_traits> namespace std { template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits; constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits; constexpr auto _Nd_u = numeric_limits<unsigned>::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) { constexpr int __diff = _Nd_u - _Nd; return __builtin_clz(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) { constexpr int __diff = _Nd_ul - _Nd; return __builtin_clzl(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) { constexpr int __diff = _Nd_ull - _Nd; return __builtin_clzll(__x) - __diff; } else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); unsigned long long __high = __x >> _Nd_ull; if (__high != 0) { constexpr int __diff = (2 * _Nd_ull) - _Nd; return __builtin_clzll(__high) - __diff; } constexpr auto __max_ull = numeric_limits<unsigned long long>::max(); unsigned long long __low = __x & __max_ull; return (_Nd - _Nd_ull) + __builtin_clzll(__low); } } template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits; constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits; constexpr auto _Nd_u = numeric_limits<unsigned>::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_ctz(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_ctzl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_ctzll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits<unsigned long long>::max(); unsigned long long __low = __x & __max_ull; if (__low != 0) return __builtin_ctzll(__low); unsigned long long __high = __x >> _Nd_ull; return __builtin_ctzll(__high) + _Nd_ull; } } template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits; constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits; constexpr auto _Nd_u = numeric_limits<unsigned>::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_popcount(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_popcountl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_popcountll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits<unsigned long long>::max(); unsigned long long __low = __x & __max_ull; unsigned long long __high = __x >> _Nd_ull; return __builtin_popcountll(__low) + __builtin_popcountll(__high); } } template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0 || __x == 1) return 1; auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u)); #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (!__builtin_is_constant_evaluated()) { __glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits); } #endif using __promoted_type = decltype(__x << 1); if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) { const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2; __shift_exponent |= (__shift_exponent & _Nd) << __extra_exp; } return (_Tp)1u << __shift_exponent; } template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1))); } template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; return _Nd - __countl_zero(__x); } } // namespace std #endif #endif #line 2 "Library\\lib\\limits" #line 4 "Library\\lib\\limits" namespace workspace { template <class _Tp> struct numeric_limits : std::numeric_limits<_Tp> {}; #ifdef __SIZEOF_INT128__ template <> struct numeric_limits<__uint128_t> { constexpr static __uint128_t max() { return ~__uint128_t(0); } constexpr static __uint128_t min() { return 0; } }; template <> struct numeric_limits<__int128_t> { constexpr static __int128_t max() { return numeric_limits<__uint128_t>::max() >> 1; } constexpr static __int128_t min() { return -max() - 1; } }; #endif } // namespace workspace #line 16 "Library\\lib\\alias" namespace workspace { constexpr static char eol = '\n'; using namespace std; using i32 = int_least32_t; using u32 = uint_least32_t; using i64 = int_least64_t; using u64 = uint_least64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; #else #warning 128-bit integer is not available. #endif namespace _alias_impl { template <class> struct first_arg { using type = void; }; template <class _Tp, class = void> struct parse_comp : first_arg<_Tp> {}; template <class _Tp> struct parse_comp<_Tp, std::__void_t<decltype(&_Tp::operator())>> : first_arg<decltype(&_Tp::operator())> {}; template <class _R, class _Tp, class... _Args> struct first_arg<_R(_Tp, _Args...)> { using type = _Tp; }; template <class _R, class _Tp, class... _Args> struct first_arg<_R (*)(_Tp, _Args...)> { using type = _Tp; }; template <class _G, class _R, class _Tp, class... _Args> struct first_arg<_R (_G::*)(_Tp, _Args...)> { using type = _Tp; }; template <class _G, class _R, class _Tp, class... _Args> struct first_arg<_R (_G::*)(_Tp, _Args...) const> { using type = _Tp; }; } // namespace _alias_impl template <class _Tp = void, class _Compare = std::less<_Tp>> decltype(auto) make_priority_queue(_Compare __x = _Compare()) noexcept { using type = std::conditional_t< std::is_void<_Tp>::value, std::decay_t<typename _alias_impl::parse_comp<_Compare>::type>, _Tp>; return std::priority_queue<type, std::vector<type>, _Compare>(__x); } template <class _Tp = void, class _Compare = std::less<_Tp>> decltype(auto) make_set(_Compare __x = _Compare()) noexcept { using type = std::conditional_t< std::is_void<_Tp>::value, std::decay_t<typename _alias_impl::parse_comp<_Compare>::type>, _Tp>; return std::set<type, _Compare>(__x); } template <class _Key, class _Mapped, class _Compare = std::less<_Key>> decltype(auto) make_map(_Compare __x = _Compare()) noexcept { return std::map<_Key, _Mapped, _Compare>(__x); } template <class _T1, class _T2, typename = decltype(std::declval<const _T2 &>() < std::declval<const _T1 &>())> constexpr typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y) noexcept { return __y < __x ? __y : __x; } template <class _T1, class _T2, class _Compare, typename = decltype(std::declval<_Compare>()( std::declval<const _T2 &>(), std::declval<const _T1 &>()))> constexpr typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __y : __x; } template <class _Tp, typename = decltype(std::declval<const _Tp &>() < std::declval<const _Tp &>())> constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept { return *std::min_element(__x.begin(), __x.end()); } template <class _Tp, class _Compare, typename = decltype(std::declval<_Compare>()( std::declval<const _Tp &>(), std::declval<const _Tp &>()))> constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::min_element(__x.begin(), __x.end(), __comp); } template <class _T1, class _T2, typename = decltype(std::declval<const _T1 &>() < std::declval<const _T2 &>())> constexpr typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y) noexcept { return __x < __y ? __y : __x; } template <class _T1, class _T2, class _Compare, typename = decltype(std::declval<_Compare>()( std::declval<const _T1 &>(), std::declval<const _T2 &>()))> constexpr typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __y : __x; } template <class _Tp, typename = decltype(std::declval<const _Tp &>() < std::declval<const _Tp &>())> constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept { return *std::max_element(__x.begin(), __x.end()); } template <class _Tp, class _Compare, typename = decltype(std::declval<_Compare>()( std::declval<const _Tp &>(), std::declval<const _Tp &>()))> constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::max_element(__x.begin(), __x.end(), __comp); } template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept { return std::__countr_zero(__x); } template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept { return std::__bit_width(__x) - 1; } } // namespace workspace #line 2 "Library\\lib\\cxx20" /* * @file cxx20 * @brief C++20 Features */ #line 9 "Library\\lib\\cxx20" #if __cplusplus <= 201703L #include <algorithm> #include <vector> namespace std { /** * @brief Erase the elements of a container that do not satisfy the condition. * @param __cont Container. * @param __pred Predicate. * @return Number of the erased elements. */ template <typename _Tp, typename _Alloc, typename _Predicate> inline typename vector<_Tp, _Alloc>::size_type erase_if( vector<_Tp, _Alloc> &__cont, _Predicate __pred) { const auto __osz = __cont.size(); __cont.erase(remove_if(__cont.begin(), __cont.end(), __pred), __cont.end()); return __osz - __cont.size(); } /** * @brief Erase the elements of a container that are equal to the given value. * @param __cont Container. * @param __value Value. * @return Number of the erased elements. */ template <typename _Tp, typename _Alloc, typename _Up> inline typename vector<_Tp, _Alloc>::size_type erase( vector<_Tp, _Alloc> &__cont, const _Up &__value) { const auto __osz = __cont.size(); __cont.erase(remove(__cont.begin(), __cont.end(), __value), __cont.end()); return __osz - __cont.size(); } } // namespace std #endif #line 1 "Library\\lib\\direct" #ifdef ONLINE_JUDGE #pragma GCC optimize("O3") #pragma GCC target("avx,avx2") #pragma GCC optimize("unroll-loops") #endif #line 2 "Library\\src\\opt\\binary_search.hpp" /** * @file binary_search.hpp * @brief Binary Search */ #line 12 "Library\\src\\opt\\binary_search.hpp" namespace workspace { namespace _impl { template <class _Iter, class _Pred> _Iter discrete_binary_search(_Iter __first, _Iter __last, _Pred &&__pred, bool __crit) { if (__first < __last) while (1 < __last - __first) { _Iter __mid = __first + ((__last - __first) >> 1); (__pred(__mid) == __crit ? __first : __last) = __mid; } else while (1 < __first - __last) { _Iter __mid = __last + ((__first - __last) >> 1); (__pred(__mid) == __crit ? __first : __last) = __mid; } return __first; } template <class _Real, class _Pred> _Real continuous_binary_search(_Real __first, _Real __last, _Real __eps, _Pred &&__pred, bool __crit) { if (__first < __last) for (auto __loop = std::numeric_limits<_Real>::digits; __first + __eps < __last && __loop; --__loop) { _Real __mid = (__first + __last) / 2; (__pred(__mid) == __crit ? __first : __last) = __mid; } else for (auto __loop = std::numeric_limits<_Real>::digits; __last + __eps < __first && __loop; --__loop) { _Real __mid = (__first + __last) / 2; (__pred(__mid) == __crit ? __first : __last) = __mid; } return __first; } } // namespace _impl /** * @brief Binary search on a discrete range. * * @param __first Inclusive endpoint * @param __last Exclusive endpoint * @param __pred Predicate * @return Return __x s.t. `__pred(__x) == __pred(__first)` and `__pred(__x) != * __pred(__x +/- 1)`. The sign is `+` iff `__first < __last`. */ template <class _Iter, class _Pred> typename std::enable_if< std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Iter>())), bool>::value, _Iter>::type binary_search(_Iter __first, _Iter __last, _Pred &&__pred) { assert(__first != __last); return _impl::discrete_binary_search( __first, __last, std::forward<_Pred>(__pred), __pred(__first)); } /** * @brief Binary search on the real number line. * @param __first __pred(__first) is true * @param __last __pred(__last) is false * @param eps the error tolerance * @param __pred the predicate * @return the boundary point */ template <class _Real, class _Pred> typename std::enable_if< std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Real>())), bool>::value, _Real>::type binary_search(_Real __first, _Real __last, _Real __eps, _Pred &&__pred) { assert(__first != __last); return _impl::continuous_binary_search( __first, __last, __eps, std::forward<_Pred>(__pred), __pred(__first)); } /** * @brief Parallel binary search on discrete ranges. * @param ends a vector of pairs; __pred(first) is true, __pred(second) is false * @param __pred the predicate * @return the closest points to (second) where __pred is true */ template <class Array, class _Iter = typename std::decay< decltype(std::get<0>(std::declval<Array>()[0]))>::type, class _Pred> typename std::enable_if< std::is_convertible< decltype(std::declval<_Pred>()(std::declval<std::vector<_Iter>>())[0]), bool>::value, std::vector<_Iter>>::type parallel_binary_search(Array ends, _Pred __pred) { std::vector<_Iter> mids(std::size(ends)); for (;;) { bool all_found = true; for (size_t i{}; i != std::size(ends); ++i) { const _Iter &__first = std::get<0>(ends[i]); const _Iter &__last = std::get<1>(ends[i]); const _Iter mid( __first + typename std::make_signed<decltype(__last - __first)>::type( __last - __first) / 2); if (mids[i] != mid) { all_found = false; mids[i] = mid; } } if (all_found) break; const auto res = __pred(mids); for (size_t i{}; i != std::size(ends); ++i) { (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i]; } } return mids; } /** * @brief Parallel binary search on the real number line. * @param ends a vector of pairs; __pred(first) is true, __pred(second) is false * @param eps the error tolerance * @param __pred the predicate * @return the boundary points */ template <class Array, class _Real = typename std::decay< decltype(std::get<0>(std::declval<Array>()[0]))>::type, class _Pred> typename std::enable_if< std::is_convertible< decltype(std::declval<_Pred>()(std::declval<std::vector<_Real>>())[0]), bool>::value, std::vector<_Real>>::type parallel_binary_search(Array ends, const _Real eps, _Pred __pred) { std::vector<_Real> mids(std::size(ends)); for (auto loops = 0; loops != std::numeric_limits<_Real>::digits; ++loops) { bool all_found = true; for (size_t i{}; i != std::size(ends); ++i) { const _Real __first = std::get<0>(ends[i]); const _Real __last = std::get<1>(ends[i]); if (__first + eps < __last || __last + eps < __first) { all_found = false; mids[i] = (__first + __last) / 2; } } if (all_found) break; const auto res = __pred(mids); for (size_t i{}; i != std::size(ends); ++i) { (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i]; } } return mids; } } // namespace workspace #line 2 "Library\\src\\opt\\exponential_search.hpp" /** * @file exponential_search.hpp * @brief Exponential Search */ #line 9 "Library\\src\\opt\\exponential_search.hpp" namespace workspace { /** * @brief Exponential search on a discrete range. * * @param __first Inclusive endpoint * @param __last Exclusive endpoint * @param __pred Predicate * @return Return __x s.t. `__pred(__x) == __pred(__first)` and `__pred(__x) != * __pred(__x +/- 1)`. The sign is `+` iff `__first < __last`. */ template <class _Iter, class _Pred> typename std::enable_if< std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Iter>())), bool>::value, _Iter>::type exponential_search(_Iter __first, _Iter __last, _Pred &&__pred) { assert(__first != __last); bool __crit = __pred(__first); if (__first < __last) { for (decltype(__last - __first) __step = 1; __step < __last - __first; __step <<= 1) if (__pred(__first += __step) != __crit) return _impl::discrete_binary_search( __first - __step, __first, std::forward<_Pred>(__pred), __crit); } else { for (decltype(__first - __last) __step = 1; __step < __first - __last; __step <<= 1) if (__pred(__first -= __step) != __crit) return _impl::discrete_binary_search( __first + __step, __first, std::forward<_Pred>(__pred), __crit); } return _impl::discrete_binary_search(__first, __last, std::forward<_Pred>(__pred), __crit); } /** * @brief Exponential search on the real number line. * * @param __first Endpoint * @param __last Endpoint * @param __eps Error tolerance * @param __pred Predicate * @return A boundary point `__x` s.t. `__pred(__x) == __pred(__first)`. */ template <class _Real, class _Pred> typename std::enable_if< std::is_convertible<decltype(std::declval<_Pred>()(std::declval<_Real>())), bool>::value, _Real>::type exponential_search(_Real __first, _Real __last, _Real __eps, _Pred &&__pred) { bool __crit = __pred(__first); if (__first < __last) { for (_Real __step = __eps; __step < __last - __first; __step += __step) if (__pred(__first += __step) != __crit) return _impl::continuous_binary_search(__first - __step, __first, __eps, std::forward<_Pred>(__pred), __crit); } else { for (_Real __step = __eps; __step < __first - __last; __step += __step) if (__pred(__first -= __step) != __crit) return _impl::continuous_binary_search(__first + __step, __first, __eps, std::forward<_Pred>(__pred), __crit); } return _impl::continuous_binary_search(__first, __last, __eps, std::forward<_Pred>(__pred), __crit); } } // namespace workspace #line 2 "Library\\src\\opt\\golden_section.hpp" /** * @file golden_section.hpp * @brief Golden Section */ #include <type_traits> #line 2 "Library\\src\\algebra\\system\\operation.hpp" /** * @file operation.hpp * @brief Operation Traits */ #line 9 "Library\\src\\algebra\\system\\operation.hpp" namespace workspace { // Unary `+` template <class _Tp> using require_unary_plus = std::enable_if_t< std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>; template <class _Tp, class = void> struct has_unary_plus : std::false_type {}; template <class _Tp> struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {}; // Unary `-` template <class _Tp> using require_unary_minus = std::enable_if_t< std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>; template <class _Tp, class = void> struct has_unary_minus : std::false_type {}; template <class _Tp> struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {}; // Binary `+` template <class _Tp1, class _Tp2 = _Tp1> using require_binary_plus = std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() + std::declval<const _Tp2 &>()), _Tp1>::value>; template <class _Tp1, class _Tp2 = _Tp1, class = void> struct has_binary_plus : std::false_type {}; template <class _Tp1, class _Tp2> struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>> : std::true_type {}; // Binary `-` template <class _Tp1, class _Tp2 = _Tp1> using require_binary_minus = std::__void_t<decltype( std::declval<const _Tp1 &>() - std::declval<const _Tp2 &>())>; template <class _Tp1, class _Tp2 = _Tp1, class = void> struct has_binary_minus : std::false_type {}; template <class _Tp1, class _Tp2> struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>> : std::true_type {}; // Binary `*` template <class _Tp1, class _Tp2 = _Tp1> using require_binary_multiplies = std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() * std::declval<const _Tp2 &>()), _Tp1>::value>; template <class _Tp1, class _Tp2 = _Tp1, class = void> struct has_binary_multiplies : std::false_type {}; template <class _Tp1, class _Tp2> struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>> : std::true_type {}; // Binary `/` template <class _Tp1, class _Tp2 = _Tp1> using require_binary_divides = std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() / std::declval<const _Tp2 &>()), _Tp1>::value>; template <class _Tp1, class _Tp2 = _Tp1, class = void> struct has_binary_divides : std::false_type {}; template <class _Tp1, class _Tp2> struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>> : std::true_type {}; // Binary `%` template <class _Tp1, class _Tp2 = _Tp1> using require_binary_modulus = std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() % std::declval<const _Tp2 &>()), _Tp1>::value>; template <class _Tp1, class _Tp2 = _Tp1, class = void> struct has_binary_modulus : std::false_type {}; template <class _Tp1, class _Tp2> struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>> : std::true_type {}; } // namespace workspace #line 11 "Library\\src\\opt\\golden_section.hpp" namespace workspace { /** * @brief Golden section search. */ template <class _Iterator, class _Function> std::enable_if_t<has_binary_minus<_Iterator>::value, _Iterator> golden_section( _Iterator __first, _Iterator __last, _Function &&__f) { if (__last - __first < 2) return __first; decltype(__last - __first) __a{1}, __b{2}; while (__a + __b <= __last - __first) __b ^= __a ^= __b ^= __a += __b; auto __f1 = __f(__last - __b), __f2 = __f(__last - __a); while (__a != 1) { __a ^= __b ^= __a ^= __b -= __a; if (__f2 < __f1) __f1 = __f2, __f2 = __f(__last - __a); else if ((__last -= __b) - __first < __b) __a ^= __b ^= __a ^= __b -= __a, __f2 = __f(__last - __a); else __f2 = __f1, __f1 = __f(__last - __b); } return __f1 < __f2 ? __last - __b : __last - __a; } } // namespace workspace #line 2 "Library\\src\\opt\\trinary_search.hpp" /* * @file trinary_search.hpp * @brief Trinary Search */ #line 10 "Library\\src\\opt\\trinary_search.hpp" namespace workspace { /* * @brief Trinary search on discrete range. * @param first Left end, inclusive * @param last Right end, exclusive * @param comp Compare function * @return Local minimal point. */ template <class Iter, class Comp> typename std::enable_if< std::is_convertible<decltype(std::declval<Comp>()(std::declval<Iter>(), std::declval<Iter>())), bool>::value, Iter>::type trinary_search(Iter first, Iter last, Comp comp) { assert(first < last); typename std::make_signed<decltype(last - first)>::type dist(last - first); while (2 < dist) { Iter left(first + dist / 3), right(first + dist * 2 / 3); if (comp(left, right)) last = right, dist = (dist + dist) / 3; else first = left, dist -= dist / 3; } if (1 < dist && comp(first + 1, first)) ++first; return first; } /* * @brief Trinary search on discrete range. * @param first Left end, inclusive * @param last Right end, exclusive * @param func Function * @return Local minimal point. */ template <class Iter, class Func> typename std::enable_if< std::is_same<decltype(std::declval<Func>()(std::declval<Iter>()), nullptr), std::nullptr_t>::value, Iter>::type trinary_search(Iter const &first, Iter const &last, Func func) { return trinary_search(first, last, [&](Iter const &__i, Iter const &__j) { return func(__i) < func(__j); }); } /* * @brief Trinary search on the real number line. * @param first Left end * @param last Right end * @param eps Error tolerance * @param comp Compare function * @return Local minimal point. */ template <class Real, class Comp> typename std::enable_if< std::is_convertible<decltype(std::declval<Comp>()(std::declval<Real>(), std::declval<Real>())), bool>::value, Real>::type trinary_search(Real first, Real last, Real const &eps, Comp comp) { assert(first < last); while (eps < last - first) { Real left{(first * 2 + last) / 3}, right{(first + last * 2) / 3}; if (comp(left, right)) last = right; else first = left; } return first; } /* * @brief Trinary search on the real number line. * @param first Left end * @param last Right end * @param eps Error tolerance * @param func Function * @return Local minimal point. */ template <class Real, class Func> typename std::enable_if< std::is_same<decltype(std::declval<Func>()(std::declval<Real>()), nullptr), std::nullptr_t>::value, Real>::type trinary_search(Real const &first, Real const &last, Real const &eps, Func func) { return trinary_search( first, last, eps, [&](Real const &__i, Real const &__j) { return func(__i) < func(__j); }); } } // namespace workspace #line 2 "Library\\src\\sys\\call_once.hpp" /** * @file call_once.hpp * @brief Call Once */ #line 9 "Library\\src\\sys\\call_once.hpp" namespace workspace { /** * @brief Call once. */ template <class _F> void call_once(_F &&__f) { static std::unordered_set<void *> __called; if (__called.count(std::addressof(__f))) return; __called.emplace(std::addressof(__f)); __f(); } } // namespace workspace #line 2 "Library\\src\\sys\\clock.hpp" /* * @fn clock.hpp * @brief Clock */ #line 9 "Library\\src\\sys\\clock.hpp" namespace workspace { using namespace std::chrono; namespace internal { // The start time of the program. const auto start_time{system_clock::now()}; } // namespace internal /* * @fn elapsed * @return elapsed time of the program */ int64_t elapsed() { const auto end_time{system_clock::now()}; return duration_cast<milliseconds>(end_time - internal::start_time).count(); } } // namespace workspace #line 2 "Library\\src\\sys\\ejection.hpp" /** * @file ejection.hpp * @brief Ejection */ #line 9 "Library\\src\\sys\\ejection.hpp" namespace workspace { namespace internal { struct ejection { bool exit = 0; }; } // namespace internal /** * @brief eject from a try block, throw nullptr * @param arg output */ template <class Tp> void eject(Tp const &arg) { std::cout << arg << "\n"; throw internal::ejection{}; } void exit() { throw internal::ejection{true}; } } // namespace workspace #line 2 "Library\\src\\sys\\iteration.hpp" /** * @file iteration.hpp * @brief Case Iteration */ #line 9 "Library\\src\\sys\\iteration.hpp" #line 11 "Library\\src\\sys\\iteration.hpp" namespace workspace { void main(); struct { // 1-indexed unsigned current{0}; unsigned total{1}; void read() { (std::cin >> total).ignore(); } int iterate() { static bool once = false; assert(!once); once = true; while (current++ < total) { try { main(); } catch (internal::ejection const &status) { if (status.exit) break; } } return 0; } } case_info; } // namespace workspace #line 2 "Library\\lib\\utils" // #include "src/utils/cached.hpp" #line 2 "Library\\src\\utils\\cat.hpp" /** * @file cat.hpp * @brief Cat */ #line 9 "Library\\src\\utils\\cat.hpp" namespace workspace { /** * @brief Concatenate two sequences. * * @param __c1 * @param __c2 * @return Concatenated sequence. */ template <class _C1, class _C2> constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2) noexcept { auto __c = std::forward<_C1>(__c1); if constexpr (std::is_rvalue_reference<decltype(__c2)>::value) __c.insert(std::end(__c), std::move_iterator(std::begin(__c2)), std::move_iterator(std::end(__c2))); else __c.insert(std::end(__c), std::cbegin(__c2), std::cend(__c2)); return __c; } /** * @return Concatenated sequence. */ template <class _C1, class _C2, class... _Args> constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2, _Args &&...__args) noexcept { return cat(cat(std::forward<_C1>(__c1), std::forward<_C2>(__c2)), std::forward<_Args>(__args)...); } } // namespace workspace #line 2 "Library\\src\\utils\\chval.hpp" /** * @file chval.hpp * @brief Change Less/Greater */ #line 9 "Library\\src\\utils\\chval.hpp" namespace workspace { /** * @brief Substitute __y for __x if __y < __x. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template <class _T1, class _T2, typename = decltype(std::declval<_T2>() < std::declval<_T1 &>())> typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle( _T1 &__x, _T2 &&__y) noexcept { return __y < __x ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __x < __y. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template <class _T1, class _T2, typename = decltype(std::declval<_T1 &>() < std::declval<_T2>())> typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr( _T1 &__x, _T2 &&__y) noexcept { return __x < __y ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__y, __x) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template <class _T1, class _T2, class _Compare, typename = decltype(std::declval<_Compare>()(std::declval<_T2>(), std::declval<_T1 &>()))> typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__x, __y) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template <class _T1, class _T2, class _Compare, typename = decltype(std::declval<_Compare>()(std::declval<_T1 &>(), std::declval<_T2>()))> typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false; } } // namespace workspace #line 1 "Library\\src\\utils\\compare.hpp" /** * @file compare.hpp * @brief Compare */ #line 2 "Library\\src\\utils\\sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #line 11 "Library\\src\\utils\\sfinae.hpp" #ifndef __INT128_DEFINED__ #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; template <> struct is_signed<__uint128_t> : std::false_type {}; template <> struct is_signed<__int128_t> : std::true_type {}; template <> struct is_unsigned<__uint128_t> : std::true_type {}; template <> struct is_unsigned<__int128_t> : std::false_type {}; #endif } // namespace std namespace workspace { template <class Tp, class... Args> struct variadic_front { using type = Tp; }; template <class... Args> struct variadic_back; template <class Tp> struct variadic_back<Tp> { using type = Tp; }; template <class Tp, class... Args> struct variadic_back<Tp, Args...> { using type = typename variadic_back<Args...>::type; }; template <class type, template <class> class trait> using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type; /** * @brief Return type of subscripting ( @c [] ) access. */ template <class _Tp> using subscripted_type = typename std::decay<decltype(std::declval<_Tp &>()[0])>::type; template <class Container> using element_type = typename std::decay<decltype( *std::begin(std::declval<Container &>()))>::type; template <class _Tp, class = std::nullptr_t> struct has_begin : std::false_type {}; template <class _Tp> struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)> : std::true_type {}; template <class _Tp, class = void> struct has_mod : std::false_type {}; template <class _Tp> struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {}; template <class _Tp, class = void> struct is_integral_ext : std::false_type {}; template <class _Tp> struct is_integral_ext< _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template <class _Tp> constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value; #endif template <typename _Tp, typename = void> struct multiplicable_uint { using type = uint_least32_t; }; template <typename _Tp> struct multiplicable_uint< _Tp, typename std::enable_if<(2 < sizeof(_Tp)) && (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template <typename _Tp> struct multiplicable_uint<_Tp, typename std::enable_if<(4 < sizeof(_Tp))>::type> { using type = __uint128_t; }; #endif template <typename _Tp> struct multiplicable_int { using type = typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type; }; template <typename _Tp> struct multiplicable { using type = std::conditional_t< is_integral_ext<_Tp>::value, std::conditional_t<std::is_signed<_Tp>::value, typename multiplicable_int<_Tp>::type, typename multiplicable_uint<_Tp>::type>, _Tp>; }; } // namespace workspace #line 7 "Library\\src\\utils\\compare.hpp" namespace workspace { /** * @brief Compare 2 points by their value of `atan2`. * * @return */ template <class _Tp> bool compare_arg(const _Tp &__p1, const _Tp &__p2) noexcept { const auto &[__x1, __y1] = __p1; const auto &[__x2, __y2] = __p2; using value_type = std::decay_t<decltype(__x1)>; using mul_type = typename multiplicable<value_type>::type; if (__y1 == value_type(0)) return value_type(0) <= __x1 && (value_type(0) < __y2 || (__y2 == value_type(0) && __x2 < value_type(0))); return value_type(0) < __y1 ? value_type(0) <= __y2 && mul_type(__y1) * __x2 < mul_type(__x1) * __y2 : value_type(0) <= __y2 || mul_type(__y1) * __x2 < mul_type(__x1) * __y2; } } // namespace workspace #line 6 "Library\\lib\\utils" // #include "src/utils/fixed_point.hpp" // #include "src/utils/hash.hpp" // #include "src/utils/io/istream.hpp" // #include "src/utils/io/ostream.hpp" // #include "src/utils/io/read.hpp" #line 2 "Library\\src\\utils\\grid\\motion.hpp" /** * @file motion.hpp * @brief Motion */ #line 9 "Library\\src\\utils\\grid\\motion.hpp" namespace workspace { /** * @brief Transpose. * * @param __grid */ template <class _Grid, typename = decltype(std::declval<std::decay_t<_Grid>>()[0].resize(0))> constexpr decltype(auto) transpose(_Grid &&__grid) noexcept { auto __h = std::size(__grid), __w = std::size(__grid[0]); std::decay_t<_Grid> __t(__w); for (auto &&__r : __t) __r.resize(__h); for (size_t __i = 0; __i != __h; ++__i) for (size_t __j = 0; __j != __w; ++__j) if constexpr (std::is_rvalue_reference<decltype(__grid)>::value) __t[__j][__i] = std::move(__grid[__i][__j]); else __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template <class _Tp, size_t _Rows, size_t _Cols> constexpr decltype(auto) transpose(const _Tp (&__grid)[_Rows][_Cols]) noexcept { std::array<std::array<_Tp, _Rows>, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template <class _Tp, size_t _Rows, size_t _Cols> constexpr decltype(auto) transpose(_Tp(&&__grid)[_Rows][_Cols]) noexcept { std::array<std::array<_Tp, _Rows>, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = std::move(__grid[__i][__j]); return __t; } /** * @brief Transpose. * * @param __grid */ template <class _Tp, size_t _Rows, size_t _Cols> constexpr decltype(auto) transpose( const std::array<std::array<_Tp, _Cols>, _Rows> &__grid) noexcept { std::array<std::array<_Tp, _Rows>, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template <class _Tp, size_t _Rows, size_t _Cols> constexpr decltype(auto) transpose( std::array<std::array<_Tp, _Cols>, _Rows> &&__grid) noexcept { std::array<std::array<_Tp, _Rows>, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = std::move(__grid[__i][__j]); return __t; } /** * @brief Roll the grid counter-clockwise. * * @param __grid * @return */ template <class _Grid> decltype(auto) roll_ccw(_Grid &&__grid) noexcept { if constexpr (std::is_rvalue_reference<decltype(__grid)>::value) { auto __t = transpose(std::move(__grid)); std::reverse(std::begin(__t), std::end(__t)); return __t; } else { auto __t = transpose(__grid); std::reverse(std::begin(__t), std::end(__t)); return __t; } } /** * @brief Roll the grid clockwise. * * @param __grid * @return */ template <class _Grid> decltype(auto) roll_cw(_Grid &&__grid) noexcept { if constexpr (std::is_rvalue_reference<decltype(__grid)>::value) { std::reverse(std::begin(__grid), std::end(__grid)); return transpose(std::move(__grid)); } else { auto __t = transpose(__grid); for (auto &&__r : __t) std::reverse(std::begin(__r), std::end(__r)); return __t; } } } // namespace workspace #line 2 "Library\\src\\utils\\io\\setup.hpp" /** * @file setup.hpp * @brief I/O Setup */ #line 10 "Library\\src\\utils\\io\\setup.hpp" namespace workspace { /** * @brief Setup I/O. * @param __n Standard output precision */ void io_setup(int __n) { std::cin.tie(0)->sync_with_stdio(0); std::cout << std::fixed << std::setprecision(__n); #ifdef _buffer_check atexit([] { char bufc; if (std::cin >> bufc) std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n"; }); #endif } } // namespace workspace #line 2 "Library\\src\\utils\\iterator\\category.hpp" /* * @file category.hpp * @brief Iterator Category */ #line 10 "Library\\src\\utils\\iterator\\category.hpp" namespace workspace { /* * @tparam Tuple Tuple of iterator types */ template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1> struct common_iterator_category { using type = typename std::common_type< typename common_iterator_category<Tuple, N - 1>::type, typename std::iterator_traits<typename std::tuple_element< N, Tuple>::type>::iterator_category>::type; }; template <class Tuple> struct common_iterator_category<Tuple, 0> { using type = typename std::iterator_traits< typename std::tuple_element<0, Tuple>::type>::iterator_category; }; } // namespace workspace #line 2 "Library\\src\\utils\\iterator\\reverse.hpp" /* * @file reverse_iterator.hpp * @brief Reverse Iterator */ #if __cplusplus >= 201703L #include <iterator> #include <optional> namespace workspace { /* * @class reverse_iterator * @brief Wrapper class for `std::reverse_iterator`. * @see http://gcc.gnu.org/PR51823 */ template <class Iterator> class reverse_iterator : public std::reverse_iterator<Iterator> { using base_std = std::reverse_iterator<Iterator>; std::optional<typename base_std::value_type> deref; public: using base_std::reverse_iterator; constexpr typename base_std::reference operator*() noexcept { if (!deref) { Iterator tmp = base_std::current; deref = *--tmp; } return deref.value(); } constexpr reverse_iterator &operator++() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator &operator--() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator++(int) noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator--(int) noexcept { base_std::operator++(); deref.reset(); return *this; } }; } // namespace workspace #endif #line 2 "Library\\src\\utils\\make_vector.hpp" /** * @file make_vector.hpp * @brief Multi-dimensional Vector */ #if __cplusplus >= 201703L #include <tuple> #include <vector> namespace workspace { /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template <typename _Tp, class _Dim, size_t _Nm> constexpr decltype(auto) make_vector([[maybe_unused]] _Dim *__dim, const _Tp &__x = _Tp()) { static_assert(std::is_convertible<_Dim, size_t>::value); if constexpr (_Nm) return std::vector(*__dim, make_vector<_Tp, _Dim, _Nm - 1>(std::next(__dim), __x)); else return __x; } /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template <typename _Tp, class _Dim, size_t _Nm> constexpr decltype(auto) make_vector(const _Dim (&__dim)[_Nm], const _Tp &__x = _Tp()) { return make_vector<_Tp, _Dim, _Nm>((_Dim *)__dim, __x); } /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template <typename _Tp, class _Dim, size_t _Nm = 0> constexpr decltype(auto) make_vector([[maybe_unused]] const _Dim &__dim, const _Tp &__x = _Tp()) { if constexpr (_Nm == std::tuple_size<_Dim>::value) return __x; else { static_assert( std::is_convertible<std::tuple_element_t<_Nm, _Dim>, size_t>::value); return std::vector(std::get<_Nm>(__dim), make_vector<_Tp, _Dim, _Nm + 1>(__dim, __x)); } } } // namespace workspace #endif #line 2 "Library\\src\\utils\\py-like\\enumerate.hpp" /** * @file enumerate.hpp * @brief Enumerate */ #line 2 "Library\\src\\utils\\py-like\\range.hpp" /** * @file range.hpp * @brief Range */ #line 9 "Library\\src\\utils\\py-like\\range.hpp" #line 2 "Library\\src\\utils\\py-like\\reversed.hpp" /** * @file reversed.hpp * @brief Reversed */ #include <initializer_list> #line 10 "Library\\src\\utils\\py-like\\reversed.hpp" namespace workspace { namespace _reversed_impl { template <class _Container> class reversed { _Container __cont; public: constexpr reversed(_Container &&__cont) noexcept : __cont(__cont) {} constexpr decltype(auto) begin() noexcept { return std::rbegin(__cont); } constexpr decltype(auto) begin() const noexcept { return std::rbegin(__cont); } constexpr decltype(auto) end() noexcept { return std::rend(__cont); } constexpr decltype(auto) end() const noexcept { return std::rend(__cont); } constexpr decltype(auto) size() const noexcept { return std::size(__cont); } }; } // namespace _reversed_impl template <class _Container> constexpr decltype(auto) reversed(_Container &&__cont) noexcept { return _reversed_impl::reversed<_Container>{std::forward<_Container>(__cont)}; } template <class _Tp> constexpr decltype(auto) reversed( std::initializer_list<_Tp> &&__cont) noexcept { return _reversed_impl::reversed<std::initializer_list<_Tp>>{ std::forward<std::initializer_list<_Tp>>(__cont)}; } } // namespace workspace #line 12 "Library\\src\\utils\\py-like\\range.hpp" #if __cplusplus >= 201703L namespace workspace { template <class _Index> class range { _Index __first, __last; public: class iterator { _Index current; public: using difference_type = std::ptrdiff_t; using value_type = _Index; using reference = typename std::add_const<_Index>::type &; using pointer = iterator; using iterator_category = std::random_access_iterator_tag; constexpr iterator(const _Index &__i = _Index()) noexcept : current(__i) {} constexpr bool operator==(const iterator &__x) const noexcept { return current == __x.current; } constexpr bool operator!=(const iterator &__x) const noexcept { return current != __x.current; } constexpr bool operator<(const iterator &__x) const noexcept { return current < __x.current; } constexpr bool operator<=(const iterator &__x) const noexcept { return current <= __x.current; } constexpr bool operator>(const iterator &__x) const noexcept { return current > __x.current; } constexpr bool operator>=(const iterator &__x) const noexcept { return current >= __x.current; } constexpr iterator &operator++() noexcept { ++current; return *this; } constexpr iterator &operator++(int) noexcept { auto __tmp = *this; ++current; return __tmp; } constexpr iterator &operator--() noexcept { --current; return *this; } constexpr iterator &operator--(int) noexcept { auto __tmp = *this; --current; return __tmp; } constexpr difference_type operator-(const iterator &__x) const noexcept { return current - __x.current; } constexpr iterator &operator+=(difference_type __x) noexcept { current += __x; return *this; } constexpr iterator operator+(difference_type __x) const noexcept { return iterator(*this) += __x; } constexpr iterator &operator-=(difference_type __x) noexcept { current -= __x; return *this; } constexpr iterator operator-(difference_type __x) const noexcept { return iterator(*this) -= __x; } constexpr reference operator*() const noexcept { return current; } }; constexpr range(_Index __first, _Index __last) noexcept : __first(__first), __last(__last) {} constexpr range(_Index __last) noexcept : __first(), __last(__last) {} constexpr iterator begin() const noexcept { return iterator{__first}; } constexpr iterator end() const noexcept { return iterator{__last}; } constexpr reverse_iterator<iterator> rbegin() const noexcept { return reverse_iterator<iterator>(end()); } constexpr reverse_iterator<iterator> rend() const noexcept { return reverse_iterator<iterator>(begin()); } constexpr size_t size() const noexcept { return std::distance(__first, __last); } }; template <class... _Args> constexpr decltype(auto) rrange(_Args &&...__args) noexcept { return reversed(range(std::forward<_Args>(__args)...)); } template <class _Container> constexpr decltype(auto) iterate(_Container &&__cont) noexcept { return range(std::begin(__cont), std::end(__cont)); } template <class _Container> constexpr decltype(auto) riterate(_Container &&__cont) noexcept { return range(std::rbegin(__cont), std::rend(__cont)); } } // namespace workspace #endif #line 2 "Library\\src\\utils\\py-like\\zip.hpp" /** * @file zip.hpp * @brief Zip */ #line 11 "Library\\src\\utils\\py-like\\zip.hpp" #line 14 "Library\\src\\utils\\py-like\\zip.hpp" #if __cplusplus >= 201703L namespace workspace { namespace internal { template <class> struct zipped_iterator; template <class...> struct zipped_iterator_tuple; template <class... Args> class zipped { using ref_tuple = std::tuple<Args...>; ref_tuple args; template <size_t N = 0> constexpr auto begin_cat() const noexcept { if constexpr (N != std::tuple_size<ref_tuple>::value) { return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))), begin_cat<N + 1>()); } else return std::tuple<>(); } template <size_t N = 0> constexpr auto end_cat() const noexcept { if constexpr (N != std::tuple_size<ref_tuple>::value) { return std::tuple_cat(std::tuple(std::end(std::get<N>(args))), end_cat<N + 1>()); } else return std::tuple<>(); } public: constexpr zipped(Args &&...args) noexcept : args(args...) {} class iterator { using base_tuple = typename zipped_iterator_tuple<Args...>::type; public: using iterator_category = typename common_iterator_category<base_tuple>::type; using difference_type = std::ptrdiff_t; using value_type = zipped_iterator<base_tuple>; using reference = zipped_iterator<base_tuple> &; using pointer = iterator; protected: value_type current; template <size_t N = 0> constexpr bool equal(const iterator &rhs) const noexcept { if constexpr (N != std::tuple_size<base_tuple>::value) { return std::get<N>(current) == std::get<N>(rhs.current) || equal<N + 1>(rhs); } else return false; } template <size_t N = 0> constexpr void increment() noexcept { if constexpr (N != std::tuple_size<base_tuple>::value) { ++std::get<N>(current); increment<N + 1>(); } } template <size_t N = 0> constexpr void decrement() noexcept { if constexpr (N != std::tuple_size<base_tuple>::value) { --std::get<N>(current); decrement<N + 1>(); } } template <size_t N = 0> constexpr void advance(difference_type __d) noexcept { if constexpr (N != std::tuple_size<base_tuple>::value) { std::get<N>(current) += __d; advance<N + 1>(__d); } } public: constexpr iterator() noexcept = default; constexpr iterator(base_tuple const ¤t) noexcept : current(current) {} constexpr bool operator==(const iterator &rhs) const noexcept { return equal(rhs); } constexpr bool operator!=(const iterator &rhs) const noexcept { return !equal(rhs); } constexpr iterator &operator++() noexcept { increment(); return *this; } constexpr iterator &operator--() noexcept { decrement(); return *this; } constexpr bool operator<(const iterator &rhs) const noexcept { return std::get<0>(current) < std::get<0>(rhs.current); } constexpr bool operator<=(const iterator &rhs) const noexcept { return std::get<0>(current) <= std::get<0>(rhs.current); } constexpr iterator &operator+=(difference_type __d) noexcept { advance(__d); return *this; } constexpr iterator &operator-=(difference_type __d) noexcept { advance(-__d); return *this; } constexpr iterator operator+(difference_type __d) const noexcept { return iterator{*this} += __d; } constexpr iterator operator-(difference_type __d) const noexcept { return iterator{*this} -= __d; } constexpr difference_type operator-(const iterator &rhs) const noexcept { return std::get<0>(current) - std::get<0>(rhs.current); } constexpr reference operator*() noexcept { return current; } }; constexpr iterator begin() const noexcept { return iterator{begin_cat()}; } constexpr iterator end() const noexcept { return iterator{end_cat()}; } constexpr reverse_iterator<iterator> rbegin() const noexcept { return reverse_iterator<iterator>{end()}; } constexpr reverse_iterator<iterator> rend() const noexcept { return reverse_iterator<iterator>{begin()}; } }; template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> { using type = decltype(std::tuple_cat( std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(), std::declval<typename zipped_iterator_tuple<Args...>::type>())); }; template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; }; template <class Iter_tuple> struct zipped_iterator : Iter_tuple { constexpr zipped_iterator(Iter_tuple const &__t) noexcept : Iter_tuple::tuple(__t) {} constexpr zipped_iterator(zipped_iterator const &__t) = default; constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default; // Avoid move initialization. constexpr zipped_iterator(zipped_iterator &&__t) : zipped_iterator(static_cast<zipped_iterator const &>(__t)) {} // Avoid move assignment. zipped_iterator &operator=(zipped_iterator &&__t) { return operator=(static_cast<zipped_iterator const &>(__t)); } template <size_t N> friend constexpr auto &get(zipped_iterator<Iter_tuple> const &__z) noexcept { return *std::get<N>(__z); } template <size_t N> friend constexpr auto get(zipped_iterator<Iter_tuple> &&__z) noexcept { return *std::get<N>(__z); } }; } // namespace internal } // namespace workspace namespace std { template <size_t N, class Iter_tuple> struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> { using type = typename remove_reference<typename iterator_traits< typename tuple_element<N, Iter_tuple>::type>::reference>::type; }; template <class Iter_tuple> struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>> : tuple_size<Iter_tuple> {}; } // namespace std namespace workspace { template <class... Args> constexpr auto zip(Args &&...args) noexcept { return internal::zipped<Args...>(std::forward<Args>(args)...); } template <class... Args> constexpr auto zip(std::initializer_list<Args> const &...args) noexcept { return internal::zipped<const std::initializer_list<Args>...>(args...); } } // namespace workspace #endif #line 10 "Library\\src\\utils\\py-like\\enumerate.hpp" #if __cplusplus >= 201703L namespace workspace { namespace _enumerate_impl { constexpr size_t min_size() noexcept { return SIZE_MAX; } template <class _Container, class... _Args> constexpr size_t min_size(_Container const &__cont, _Args &&...__args) noexcept { return std::min(std::size(__cont), min_size(std::forward<_Args>(__args)...)); } } // namespace _enumerate_impl template <class... _Args> constexpr decltype(auto) enumerate(_Args &&...__args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::forward<_Args>(__args)...); } template <class... _Args> constexpr decltype(auto) enumerate( std::initializer_list<_Args> const &...__args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::vector(__args)...); } } // namespace workspace #endif #line 2 "Library\\src\\utils\\rand\\rng.hpp" /** * @file rng.hpp * @brief Random Number Generator */ #line 9 "Library\\src\\utils\\rand\\rng.hpp" namespace workspace { template <typename _Arithmetic> using uniform_distribution = typename std::conditional< std::is_integral<_Arithmetic>::value, std::uniform_int_distribution<_Arithmetic>, std::uniform_real_distribution<_Arithmetic>>::type; template <typename _Arithmetic, class _Engine = std::mt19937> class random_number_generator : uniform_distribution<_Arithmetic> { using base = uniform_distribution<_Arithmetic>; _Engine __engine; public: random_number_generator(_Arithmetic __min, _Arithmetic __max) : base(__min, __max), __engine(std::random_device{}()) {} random_number_generator(_Arithmetic __max = 1) : random_number_generator(0, __max) {} random_number_generator(typename base::param_type const &__param) : base(__param), __engine(std::random_device{}()) {} decltype(auto) operator()() noexcept { return base::operator()(__engine); } }; } // namespace workspace #line 2 "Library\\src\\utils\\rand\\shuffle.hpp" /** * @file shuffle.hpp * @brief Shuffle */ #line 10 "Library\\src\\utils\\rand\\shuffle.hpp" namespace workspace { template <class _RAIter, class _Engine = std::mt19937> void shuffle(_RAIter __first, _RAIter __last) { static _Engine __engine(std::random_device{}()); std::shuffle(__first, __last, __engine); } } // namespace workspace #line 2 "Library\\src\\utils\\rand\\tree.hpp" #line 4 "Library\\src\\utils\\rand\\tree.hpp" #line 6 "Library\\src\\utils\\rand\\tree.hpp" namespace workspace { auto random_tree(std::size_t __n) { std::vector<std::pair<std::size_t, std::size_t>> __edges; random_number_generator rng(std::size_t(0), __n); for (std::size_t __i = 1; __i != __n; ++__i) __edges.emplace_back(__i + 1, rng() % __i + 1); return __edges; } } // namespace workspace #line 2 "Library\\src\\utils\\round_div.hpp" /* * @file round_div.hpp * @brief Round Integer Division */ #line 9 "Library\\src\\utils\\round_div.hpp" #line 11 "Library\\src\\utils\\round_div.hpp" namespace workspace { /* * @fn floor_div * @brief floor of fraction. * @param x the numerator * @param y the denominator * @return maximum integer z s.t. z <= x / y * @note y must be nonzero. */ template <typename T1, typename T2> constexpr typename std::enable_if<(is_integral_ext<T1>::value && is_integral_ext<T2>::value), typename std::common_type<T1, T2>::type>::type floor_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? (x - y + 1) / y : x / y; } /* * @fn ceil_div * @brief ceil of fraction. * @param x the numerator * @param y the denominator * @return minimum integer z s.t. z >= x / y * @note y must be nonzero. */ template <typename T1, typename T2> constexpr typename std::enable_if<(is_integral_ext<T1>::value && is_integral_ext<T2>::value), typename std::common_type<T1, T2>::type>::type ceil_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? x / y : (x + y - 1) / y; } } // namespace workspace #line 11 "other-workspace\\c.cc" signed main() { using namespace workspace; io_setup(15); /* given case_info.read(); //*/ /* unspecified case_info.total = -1; //*/ return case_info.iterate(); } #line 2 "Library\\src\\number_theory\\least_factor.hpp" /** * @file least_factor.hpp * @brief Least Prime Factor */ #line 10 "Library\\src\\number_theory\\least_factor.hpp" #line 12 "Library\\src\\number_theory\\least_factor.hpp" namespace workspace { /** * @brief Calculate the least prime factor for positive integers. * * @tparam N Range of calculation, exclusive */ template <unsigned N> class least_factor { unsigned least[N], prime[N >> 1], n; public: least_factor() : least{}, prime{}, n{} { for (auto i = 2u; i < N; ++i) { if (!least[i]) prime[n++] = least[i] = i; for (auto *p = prime; *p && *p <= least[i] && *p * i < N; ++p) { least[*p * i] = *p; } } } /** * @param x An integer with 0 < |x| < N * @return Least prime factor of x */ template <typename int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, int_type>::type operator()(int_type x) const { assert(x); if (x < 0) x = -x; assert((unsigned)x < N); return least[x]; } /** * @brief Factorize * * @param x An integer with 0 < |x| < N * @return Prime factors in ascending order. */ template <typename int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, std::vector<int_type>>::type factorize(int_type x) const { assert(x); if (x < 0) x = -x; assert((unsigned)x < N); std::vector<int_type> __p; while (x != 1) { __p.emplace_back(least[x]); x /= least[x]; } return __p; } /** * @return Sorted list of prime numbers less than N */ const std::vector<unsigned> &primes() const { static const std::vector<unsigned> prime_vector(prime, prime + n); return prime_vector; } }; } // namespace workspace #line 27 "other-workspace\\c.cc" namespace workspace { void main() { // start here! int n; cin >> n; bitset<50000001> bs; i64 ans{}; for (i64 i : range<i64>(1, bs.size())) { if (bs[i]) continue; i64 j = 1; i64 c = 0; while (i * j * j <= n) { bs[i * j * j] = 1; ++j; ++c; } ans += c * c; } cout << ans << "\n"; } } // namespace workspace