結果
問題 | No.1516 simple 門松列 problem Re:MASTER |
ユーザー | noimi |
提出日時 | 2021-05-21 22:48:13 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 33,756 bytes |
コンパイル時間 | 4,184 ms |
コンパイル使用メモリ | 255,440 KB |
実行使用メモリ | 13,632 KB |
最終ジャッジ日時 | 2024-10-10 09:32:08 |
合計ジャッジ時間 | 12,553 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 66 ms
6,816 KB |
testcase_02 | AC | 434 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,820 KB |
testcase_06 | AC | 15 ms
6,816 KB |
testcase_07 | AC | 56 ms
6,816 KB |
testcase_08 | AC | 79 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 18 ms
6,820 KB |
testcase_11 | AC | 4 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | TLE | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
ソースコード
#pragma region Macros // #pragma GCC target("avx2") #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #define ll long long #define ld long double #define rep2(i, a, b) for(ll i = a; i <= b; ++i) #define rep(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i >= b; --i) #define pii pair<int, int> #define pll pair<ll, ll> #define pb push_back #define eb emplace_back #define vi vector<int> #define vll vector<ll> #define vpi vector<pii> #define vpll vector<pll> #define overload2(_1, _2, name, ...) name #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ IN(name) #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) #define mt make_tuple #define fi first #define se second #define all(c) begin(c), end(c) #define SUM(v) accumulate(all(v), 0LL) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) using namespace std; constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}}; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; const string YESNO[2] = {"NO", "YES"}; const string YesNo[2] = {"No", "Yes"}; const string yesno[2] = {"no", "yes"}; void YES(bool t = 1) { cout << YESNO[t] << endl; } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { cout << YesNo[t] << endl; } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { cout << yesno[t] << endl; } void no(bool t = 1) { yes(!t); } template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define si(c) (int)(c).size() #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); } template <class T> void scan(vector<T> &); template <class T> void scan(vector<T> &a) { for(auto &i : a) scan(i); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vi iota(int n) { vi a(n); iota(all(a), 0); return a; } template <typename T> vi iota(vector<T> &a, bool greater = false) { vi res(a.size()); iota(all(res), 0); sort(all(res), [&](int i, int j) { if(greater) return a[i] > a[j]; return a[i] < a[j]; }); return res; } #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) template <class T> T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template <class T> T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x + y - 1) / y); } template <class T> T POW(T x, int n) { T res = 1; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } vector<pll> factor(ll x) { vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0) { ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; } template <class T> vector<T> divisor(T x) { vector<T> ans; for(T i = 1; i * i <= x; i++) if(x % i == 0) { ans.pb(i); if(i * i != x) ans.pb(x / i); } return ans; } template <typename T> void zip(vector<T> &x) { vector<T> y = x; sort(all(y)); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template <class S> void fold_in(vector<S> &v) {} template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) { for(auto e : a) v.emplace_back(e); fold_in(v, tail...); } template <class S> void renumber(vector<S> &v) {} template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) { for(auto &&e : a) e = lb(v, e); renumber(v, tail...); } template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) { vector<S> v; fold_in(v, head, args...); sort(all(v)), v.erase(unique(all(v)), v.end()); renumber(v, head, args...); return v; } // bit 演算系 ll pow2(int i) { return 1LL << i; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } // int allbit(int n) { return (1 << n) - 1; } ll allbit(ll n) { return (1LL << n) - 1; } int popcount(signed t) { return __builtin_popcount(t); } int popcount(ll t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi - y.fi, x.se - y.se); } template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi + y.fi, x.se + y.se); } template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); } // template <class T> pair<T, T> &operator+=(pair<T, T> x, const pair<T, T> &y) { // x = x + y; // return &x; // } // template <class T> pair<T, T> &operator-=(pair<T, T> x, const pair<T, T> &y) { // x = x - y; // return &x; // } template <class T> ll operator*(const pair<T, T> &x, const pair<T, T> &y) { return (ll)x.fi * y.fi + (ll)x.se * y.se; } template <typename T> struct edge { int from, to; T cost; int id; edge(int to, T cost) : from(-1), to(to), cost(cost) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {} constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; } edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; using Tree = vector<vector<int>>; using Graph = vector<vector<int>>; template <class T> using Wgraph = vector<vector<edge<T>>>; Graph getG(int n, int m = -1, bool directed = false, int margin = 1) { Tree res(n); if(m == -1) m = n - 1; while(m--) { int a, b; cin >> a >> b; a -= margin, b -= margin; res[a].emplace_back(b); if(!directed) res[b].emplace_back(a); } return move(res); } template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) { Wgraph<T> res(n); if(m == -1) m = n - 1; while(m--) { int a, b; T c; cin >> a >> b >> c; a -= margin, b -= margin; res[a].emplace_back(b, c); if(!directed) res[b].emplace_back(a, c); } return move(res); } void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); } template <class S> void add(Wgraph<S> &G, int x, int y, S c) { G[x].eb(y, c), G[y].eb(x, c); } #define i128 __int128_t #define ull unsigned long long int #define TEST \ INT(testcases); \ while(testcases--) template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { for(auto it = begin(v); it != end(v); ++it) { if(it == begin(v)) os << *it; else os << " " << *it; } return os; } template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) { os << p.first << " " << p.second; return os; } template <class S, class T> string to_string(pair<S, T> p) { return "(" + to_string(p.first) + "," + to_string(p.second) + ")"; } template <class A> string to_string(A v) { if(v.empty()) return "{}"; string ret = "{"; for(auto &x : v) ret += to_string(x) + ","; ret.back() = '}'; return ret; } string to_string(string s) { return "\"" + s + "\""; } string to_string(char c) { return string(1, c); } #ifdef _LOCAL void dump() { cerr << endl; } template <class Head, class... Tail> void dump(Head head, Tail... tail) { cerr << to_string(head) << " "; dump(tail...); } #define endl '\n' #undef endl #define debug(x) \ cout << #x << ": "; \ dump(x) #else void dump() {} template <class Head, class... Tail> void dump(Head head, Tail... tail) {} #define debug(x) #endif template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2; struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(15); } } setup_io; #define drop(s) cout << #s << endl, exit(0) template <int N> struct ndFORarray { std::array<int, N> v; ndFORarray(std::array<int, N> v_) : v(v_) {} struct ndFORitr { const std::array<int, N> &v; std::array<int, N> tmp; bool is_end; ndFORitr(const std::array<int, N> &v_) : v(v_), tmp(), is_end(false) {} bool operator!=(const ndFORitr &) const { return !is_end; } void operator++() { int pos = N - 1; while(pos != -1) { tmp[pos] += 1; if(tmp[pos] == v[pos]) { tmp[pos] = 0; pos -= 1; } else { break; } } if(pos == -1) { is_end = true; } } const std::array<int, N> &operator*() const { return tmp; } }; ndFORitr begin() const { return ndFORitr(v); } ndFORitr end() const { return ndFORitr(v); } }; struct ndFORvector { std::vector<int> v; ndFORvector(std::vector<int> v_) : v(v_) {} struct ndFORitr { const std::vector<int> &v; std::vector<int> tmp; bool is_end; ndFORitr(const std::vector<int> &v_) : v(v_), tmp(v.size(), 0), is_end(false) {} bool operator!=(const ndFORitr &) const { return !is_end; } void operator++() { int pos = v.size() - 1; while(pos != -1) { tmp[pos] += 1; if(tmp[pos] == v[pos]) { tmp[pos] = 0; pos -= 1; } else { break; } } if(pos == -1) { is_end = true; } } const std::vector<int> &operator*() const { return tmp; } }; ndFORitr begin() const { return ndFORitr(v); } ndFORitr end() const { return ndFORitr(v); } }; auto ndFOR(std::vector<int> v) { return ndFORvector(v); } template <class... Ts> auto ndFOR(Ts... v) { return ndFORarray<std::tuple_size<std::tuple<Ts...>>::value>({v...}); } template <class F> struct REC { F f; REC(F &&f_) : f(std::forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, std::forward<Args>(args)...); } }; #pragma endregion template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)){}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; namespace modular { constexpr ll MOD = 998244353; const int MAXN = 11000000; template <ll Modulus> class modint; using mint = modint<MOD>; using vmint = vector<mint>; vector<mint> Inv; mint inv(int x); template <ll Modulus> class modint { public: static constexpr int mod() { return Modulus; } ll a; constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {} constexpr ll &val() noexcept { return a; } constexpr const ll &val() const noexcept { return a; } constexpr modint operator-() const noexcept { return modint() - *this; } constexpr modint operator+() const noexcept { return *this; } constexpr modint &operator++() noexcept { if(++a == MOD) a = 0; return *this; } constexpr modint &operator--() noexcept { if(!a) a = MOD; a--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { mint res = *this; --*this; return res; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if(a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if(a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(const modint rhs) noexcept { a = a * (modular::inv(rhs.a)).a % Modulus; return *this; } constexpr modint pow(long long n) const noexcept { if(n < 0) { n %= Modulus - 1; n = (Modulus - 1) + n; } modint x = *this, r = 1; while(n) { if(n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr modint inv() const noexcept { return pow(Modulus - 2); } constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); } constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); } constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); } constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); } constexpr friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; } constexpr friend bool operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; } // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); } }; vmint Fact{1, 1}, Ifact{1, 1}; mint inv(int n) { if(n > MAXN) return (mint(n)).pow(MOD - 2); if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1); if(Inv.size() > n) return Inv[n]; else { for(int i = Inv.size(); i <= n; ++i) { auto [y, x] = div(int(MOD), i); Inv.emplace_back(Inv[x] * (-y)); } return Inv[n]; } } mint fact(int n) { if(Fact.size() > n) return Fact[n]; else for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i); return Fact[n]; } mint ifact(int n) { if(Ifact.size() > n) return Ifact[n]; else for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i)); return Ifact[n]; } mint modpow(ll a, ll n) { return mint(a).pow(n); } mint inv(mint a) { return inv(a.a); } mint ifact(mint a) { return ifact(a.a); } mint fact(mint a) { return fact(a.a); } mint modpow(mint a, ll n) { return modpow(a.a, n); } mint C(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i, res /= i + 1; return res; } return fact(a) * ifact(b) * ifact(a - b); } mint P(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i; return res; } return fact(a) * ifact(a - b); } ostream &operator<<(ostream &os, mint a) { os << a.a; return os; } istream &operator>>(istream &is, mint &a) { ll x; is >> x; a = x; return is; } ostream &operator<<(ostream &os, const vmint &a) { if(!a.empty()) { os << a[0]; for(int i = 1; i < si(a); i++) os << " " << a[i]; } return os; } #ifdef _MSC_VER #include <intrin.h> #endif namespace convolution { namespace internal { int ceil_pow2(int n) { int x = 0; while((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } constexpr long long safe_mod(long long x, long long m) { x %= m; if(x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if(_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while(n) { if(n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if(n <= 1) return false; if(n == 2 || n == 7 || n == 61) return true; if(n % 2 == 0) return false; long long d = n - 1; while(d % 2 == 0) d /= 2; for(long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while(t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while(x % 2 == 0) x /= 2; for(int i = 3; (long long)(i)*i <= x; i += 2) { if(x % i == 0) { divs[cnt++] = i; while(x % i == 0) { x /= i; } } } if(x > 1) { divs[cnt++] = x; } for(int g = 2;; g++) { bool ok = true; for(int i = 0; i < cnt; i++) { if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if(ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); void butterfly(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if(first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for(int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for(int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for(int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } void butterfly_inv(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if(first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for(int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for(int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for(int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } mint z = mint(n).inv(); for(int i = 0; i < n; i++) a[i] *= z; } } // namespace internal std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(std::min(n, m) <= 60) { if(n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for(int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); // mint iz = mint(z).inv(); // for(int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace convolution using Poly = vmint; Poly low(const Poly &f, int s) { return Poly(f.begin(), f.begin() + min<int>(max(s, 1), f.size())); } Poly operator-(Poly f) { for(auto &&e : f) e = -e; return f; } Poly &operator+=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] += r[i]; return l; } Poly operator+(Poly l, const Poly &r) { return l += r; } Poly &operator-=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] -= r[i]; return l; } Poly operator-(Poly l, const Poly &r) { return l -= r; } Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; } Poly operator<<(Poly f, size_t n) { return f <<= n; } Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; } Poly operator>>(Poly f, size_t n) { return f >>= n; } Poly operator*(const Poly &l, const Poly &r) { return convolution::convolution(l, r); } Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; } Poly &operator*=(Poly &l, const mint &x) { for(auto &e : l) e *= x; return l; } Poly operator*(const Poly &l, const mint &x) { auto res = l; return res *= x; } Poly inv(const Poly &f, int s = -1) { if(s == -1) s = f.size(); Poly r(s); r[0] = mint(1) / f[0]; for(int n = 1; n < s; n *= 2) { auto F = low(f, 2 * n); F.resize(2 * n); convolution::internal::butterfly(F); auto g = low(r, 2 * n); g.resize(2 * n); convolution::internal::butterfly(g); rep(i, 2 * n) F[i] *= g[i]; convolution::internal::butterfly_inv(F); rep(i, n) F[i] = 0; convolution::internal::butterfly(F); rep(i, 2 * n) F[i] *= g[i]; convolution::internal::butterfly_inv(F); rep2(i, n, min(2 * n, s) - 1) r[i] -= F[i]; } return r; } Poly integ(const Poly &f) { Poly res(f.size() + 1); for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i; return res; } Poly deriv(const Poly &f) { if(f.size() == 0) return Poly(); Poly res(f.size() - 1); rep(i, res.size()) res[i] = f[i + 1] * (i + 1); return res; } Poly log(const Poly &f) { Poly g = integ(inv(f) * deriv(f)); return Poly{g.begin(), g.begin() + f.size()}; } Poly exp(const Poly &f) { Poly g{1}; while(g.size() < f.size()) { Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2)); x[0] += 1; g.resize(2 * g.size()); x -= log(g); x *= {g.begin(), g.begin() + g.size() / 2}; rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i]; } return {g.begin(), g.begin() + f.size()}; } Poly pow(const Poly &f, ll k, int need = -1) { const int n = (int)f.size(); if(need == -1) need = n; int z = 0; rep(i, n) { if(f[i].a) break; z++; } if(z * k >= need) return Poly(n); mint rev = f[z].inv(); Poly res = exp(log((f >> z) * rev) * k) * f[z].pow(k); res.resize(need - z * k); return res << z * k; } } // namespace modular using namespace modular; int main() { INT(n, k); Matrix<mint> mat(k * k * 2); auto f = [&](int i, int j) { return i * k + j; }; auto g = [&](int i, int j) { return i * k + j + k * k; }; rep2(i, 2, n - 1) { rep(y, k) rep(z, k) { int l, r; if(y > z) { l = 0, r = y - 1; } else if(y < z) l = y + 1, r = k - 1; else continue; rep2(x, l, r) { if(x == z) continue; mat[f(y, z)][f(x, y)] = 1; mat[g(y, z)][f(x, y)] = z; mat[g(y, z)][g(x, y)] = 1; // dp[i + 1][y][z] += dp[i][x][y]; // dp2[i + 1][y][z] += dp[i][x][y] * z + dp2[i][x][y]; } } } Matrix<mint> b(k * k * 2); rep(i, k) rep(j, k) { if(i != j) { b[f(i, j)][0] = 1; b[g(i, j)][0] = i + j; } } auto res = (mat ^ n - 2) * b; mint sum; rep(i, k * k) sum += res[i][0]; cout << sum << " "; sum = 0; rep2(i, k * k, k * k * 2 - 1) sum += res[i][0]; cout << sum << endl; }