結果
問題 | No.1513 simple 門松列 problem |
ユーザー | stoq |
提出日時 | 2021-05-21 22:59:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 120 ms / 3,000 ms |
コード長 | 6,905 bytes |
コンパイル時間 | 2,346 ms |
コンパイル使用メモリ | 214,356 KB |
実行使用メモリ | 143,120 KB |
最終ジャッジ日時 | 2024-10-10 09:50:43 |
合計ジャッジ時間 | 3,978 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
10,680 KB |
testcase_01 | AC | 11 ms
12,784 KB |
testcase_02 | AC | 118 ms
143,120 KB |
testcase_03 | AC | 22 ms
37,760 KB |
testcase_04 | AC | 16 ms
33,396 KB |
testcase_05 | AC | 21 ms
37,520 KB |
testcase_06 | AC | 19 ms
34,412 KB |
testcase_07 | AC | 14 ms
27,168 KB |
testcase_08 | AC | 23 ms
40,236 KB |
testcase_09 | AC | 10 ms
10,552 KB |
testcase_10 | AC | 10 ms
12,820 KB |
testcase_11 | AC | 10 ms
10,812 KB |
testcase_12 | AC | 10 ms
12,664 KB |
testcase_13 | AC | 12 ms
16,900 KB |
testcase_14 | AC | 117 ms
141,352 KB |
testcase_15 | AC | 117 ms
142,360 KB |
testcase_16 | AC | 120 ms
141,088 KB |
testcase_17 | AC | 82 ms
105,412 KB |
testcase_18 | AC | 33 ms
37,908 KB |
testcase_19 | AC | 31 ms
47,960 KB |
testcase_20 | AC | 33 ms
55,048 KB |
ソースコード
#define MOD_TYPE 2 #pragma region Macros #include <bits/stdc++.h> using namespace std; #if 0 #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr ld PI = acos(-1.0); constexpr ld EPS = 1e-7; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion // -------------------------------------- #pragma region mint template <int MOD> struct Fp { ll val; constexpr Fp(ll v = 0) noexcept : val(v % MOD) { if (val < 0) v += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator-() const noexcept { return val ? MOD - val : 0; } constexpr Fp operator+(const Fp &r) const noexcept { return Fp(*this) += r; } constexpr Fp operator-(const Fp &r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator*(const Fp &r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator/(const Fp &r) const noexcept { return Fp(*this) /= r; } constexpr Fp &operator+=(const Fp &r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp &operator-=(const Fp &r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp &operator*=(const Fp &r) noexcept { val = val * r.val % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp &operator/=(const Fp &r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator==(const Fp &r) const noexcept { return this->val == r.val; } constexpr bool operator!=(const Fp &r) const noexcept { return this->val != r.val; } friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept { return os << x.val; } friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept { return is >> x.val; } }; Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } using mint = Fp<MOD>; template <class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() { } constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].getmod(); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } constexpr T C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } constexpr T P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } constexpr T H(ll n, ll k) const noexcept { return C(n + k - 1, k); } constexpr T Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; T res = 0; for (int i = 0; i < n; i++) res += C(n, i) * modpow(n - i, k) * (i & 1 ? -1 : 1); return res; } constexpr T fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef<mint> bc(200010); #pragma endregion mint dp1[210][210][210]; mint dp2[210][210][210]; void solve() { ll n, k; cin >> n >> k; repi(i, k) repi(j, k) { if (i == j) continue; dp1[0][i][j] = 1; dp2[0][i][j] = i + j; } mint csum1[210][210]; mint csum2[210][210]; REP(ni, 1, n - 2 + 1) { rep(j, k) csum1[0][j] = csum2[0][j] = 0; rep(i, k) rep(j, k) { csum1[i + 1][j] = csum1[i][j] + dp1[ni - 1][i][j]; csum2[i + 1][j] = csum2[i][j] + dp2[ni - 1][i][j]; } repi(x, k) repi(y, k) { if (x == y) continue; if (x > y) { dp1[ni][x][y] = csum1[x][x] - dp1[ni - 1][y][x]; dp2[ni][x][y] = csum2[x][x] + dp1[ni][x][y] * y - dp2[ni - 1][y][x]; } else { dp1[ni][x][y] = csum1[k][x] - csum1[x + 1][x] - dp1[ni - 1][y][x]; dp2[ni][x][y] = csum2[k][x] - csum2[x + 1][x] + dp1[ni][x][y] * y - dp2[ni - 1][y][x]; } } } mint ans1 = 0, ans2 = 0; repi(i, k) repi(j, k) { ans1 += dp1[n - 2][i][j]; ans2 += dp2[n - 2][i][j]; } cout << ans1 << " " << ans2 << "\n"; } int main() { solve(); }