結果

問題 No.1516 simple 門松列 problem Re:MASTER
ユーザー haruki_Kharuki_K
提出日時 2021-05-25 21:47:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 526 ms / 6,000 ms
コード長 12,784 bytes
コンパイル時間 2,490 ms
コンパイル使用メモリ 212,956 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-14 12:46:22
合計ジャッジ時間 5,621 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 38 ms
6,816 KB
testcase_02 AC 227 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 3 ms
6,816 KB
testcase_06 AC 11 ms
6,816 KB
testcase_07 AC 38 ms
6,820 KB
testcase_08 AC 57 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 12 ms
6,820 KB
testcase_11 AC 3 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 453 ms
6,820 KB
testcase_15 AC 213 ms
6,816 KB
testcase_16 AC 103 ms
6,816 KB
testcase_17 AC 36 ms
6,820 KB
testcase_18 AC 10 ms
6,820 KB
testcase_19 AC 5 ms
6,820 KB
testcase_20 AC 526 ms
6,820 KB
testcase_21 AC 514 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i, n) for (int i = (int)(n); i >= 1; i--)
#define loop(i, a, B) for (int i = a; i B; i++)
#define loopR(i, a, B) for (int i = a; i B; i--)
#define all(x) begin(x), end(x)
#define allR(x) rbegin(x), rend(x)
#define rng(x, l, r) begin(x) + (l), begin(x) + (r)
#define pb push_back
#define eb emplace_back
#define fst first
#define snd second
template <class A, class B> constexpr auto mp(A &&a, B &&b) { return make_pair(forward<A>(a), forward<B>(b)); }
template <class... T> constexpr auto mt(T&&... x) { return make_tuple(forward<T>(x)...); }
template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf_<int32_t>;
auto constexpr INF64 = inf_<int64_t>;
auto constexpr INF   = inf_<int>;
#ifdef LOCAL
#include "debug.hpp"
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } };
template <class T> using pque_max = pque<T, less<T>>;
template <class T> using pque_min = pque<T, greater<T>>;
template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0>
ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0>
ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; }
template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
    constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
    template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } };
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
    using type = vector<typename vec_impl<T, d-1>::type>;
    template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); }
template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); }
constexpr int64_t mod(int64_t x, int64_t m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; }
constexpr int64_t div_floor(int64_t x, int64_t y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); }
constexpr int64_t div_ceil(int64_t x, int64_t y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); }
constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 };
constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 };
constexpr int popcnt(ll x) { return __builtin_popcountll(x); }
mt19937_64 seed_{random_device{}()};
template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); }
i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b]
u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } //
template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); }
template <class T> vector<T> &operator--(vector<T> &v) { for (T &x : v) --x; return v; }
template <class T> vector<T> &operator++(vector<T> &v) { for (T &x : v) ++x; return v; }
// <<<
// >>> modint

template <uint32_t md>
class modint {
    static_assert(md < (1u<<31), "");
    using M = modint;
    using i64 = int64_t;
    uint32_t x;
public:
    static constexpr uint32_t mod = md;
    constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { }
    constexpr i64 val() const { return x; }
    constexpr explicit operator i64() const { return x; }
    constexpr bool operator==(M r) const { return x == r.x; }
    constexpr bool operator!=(M r) const { return x != r.x; }
    constexpr M operator+() const { return *this; }
    constexpr M operator-() const { return M()-*this; }
    constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; }
    constexpr M& operator/=(M r) { return *this *= r.inv(); }
    constexpr M operator+(M r) const { return M(*this) += r; }
    constexpr M operator-(M r) const { return M(*this) -= r; }
    constexpr M operator*(M r) const { return M(*this) *= r; }
    constexpr M operator/(M r) const { return M(*this) /= r; }
    friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
    friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
    friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
    friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
    constexpr M inv() const { assert(x > 0); return pow(md-2); }
    constexpr M pow(i64 n) const {
        assert(not (x == 0 and n == 0));
        if (n < 0) return inv().pow(-n);
        M v = *this, r = 1;
        for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
        return r;
    }
#ifdef LOCAL
    friend string to_s(M r) { return to_s(r.val(), mod); }
#endif
    friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
    friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};

// <<<
constexpr int64_t MOD = 998244353;
//constexpr int64_t MOD = 1e9+7;
using mint = modint<MOD>;
mint sign(int n) { return n & 1 ? -1 : +1; }
// >>> mod table

template <class mint> struct ModTable {
    vector<mint> fact, finv;
    void calc(int n) {
        int old = fact.size();
        if (n < old) return;
        n += 1000;
        fact.resize(n+1);
        finv.resize(n+1);
        if (old == 0) {
            fact[0] = fact[1] = finv[0] = finv[1] = 1;
            old = 2;
        }
        for (auto i = old; i <= n; i++) fact[i] = fact[i-1] * i;
        finv[n] = mint(1) / fact[n];
        for (auto i = n-1; i >= old; i--) finv[i] = finv[i+1] * (i+1);
    }
};
ModTable<mint> mod_tab;

mint fact(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.fact[n];
}
mint finv(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.finv[n];
}
mint comb(int n, int k) {
    if (n < 0 || k < 0 || n < k) return 0;
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[k] * mod_tab.finv[n-k];
}
mint perm(int n, int k) {
    assert(k >= 0); assert(n >= k);
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[n-k];
}

// <<<
// >>> matrix (vector)
template <class T>
decltype(T::one()) semi_ring_one(signed) { return T::one(); }
template <class T>
constexpr T semi_ring_one(long) { return 1; }
template <class T> struct Matrix {
    int n, m;
    vector<T> a;
    Matrix() {}
    Matrix(int n, int m) : n(n), m(m), a(n*m) {
        assert(n > 0 && m > 0);
    }
    Matrix(initializer_list<initializer_list<T>> init) {
        n = init.size();
        assert(n > 0);
        m = init.begin()->size();
        assert(m > 0);
        a.resize(n*m);
        int i = 0;
        for (auto const& ls : init) {
            assert((int)ls.size() == m);
            for (auto const& x : ls) {
                a[i++] = x;
            }
        }
    }
    auto operator[](int i) const {
        assert(0 <= i); assert(i < n);
        return a.begin() + i*m;
    }
    auto operator[](int i) {
        assert(0 <= i); assert(i < n);
        return a.begin() + i*m;
    }
    bool operator==(Matrix const& x) const {
        if (n != x.n || m != x.m) return false;
        rep (i, n) rep (j, m) if ((*this)[i][j] != x[i][j]) return false;
        return true;
    }
    bool operator!=(Matrix const& x) const {
        return !(*this == x);
    }
    Matrix operator+() const { return *this; }
    Matrix operator+(Matrix const& x) const { return Matrix(*this) += x; }
    Matrix& operator+=(Matrix const& x) {
        assert(n == x.n && m == x.m);
        rep (i, n) rep (j, m) (*this)[i][j] += x[i][j];
        return *this;
    }
    Matrix operator*(Matrix const& x) const {
        assert(m == x.n);
        Matrix ret(n, x.m);
        rep (i, n) rep (j, m) {
            auto A = ret[i];
            auto B = (*this)[i][j];
            auto C = x[j];
            rep (k, x.m) A[k] += B * C[k];
        }
        return ret;
    }
    Matrix& operator*=(Matrix const& x) {
        auto res = (*this)*x;
        swap(a, res.a);
        return *this;
    }
    Matrix operator*(T const& c) const { return Matrix(*this) *= c; }
    Matrix& operator*=(T const& c) {
        rep (i, n) rep (j, m) (*this)[i][j] *= c;
        return *this;
    }
    friend Matrix operator*(T const& c, Matrix const& x) {
        Matrix ret = x;
        rep (i, x.n) rep (j, x.m) ret[i][j] = c*x[i][j];
        return ret;
    }
    static Matrix identity(int n) {
        Matrix ret(n, n);
        rep (i, n) ret[i][i] = semi_ring_one<T>(0);
        return ret;
    }
    Matrix pow(ll k) const {
        assert(n == m); assert(k >= 0);
        Matrix v = *this, r = Matrix::identity(n);
        for ( ; k > 0; k >>= 1, v *= v) if (k & 1) r *= v;
        return r;
    }
#if 1
    Matrix operator-() const {
        Matrix x = *this;
        rep (i, n) rep (j, m) x[i][j] = -x[i][j];
        return x;
    }
    Matrix& operator-=(Matrix const& x) {
        assert(n == x.n && m == x.m);
        rep (i, n) rep (j, m) (*this)[i][j] -= x[i][j];
        return *this;
    }
    Matrix operator-(Matrix const& x) const { return Matrix(*this) -= x; }
    Matrix& operator/=(T const& c) {
        rep (i, n) rep (j, m) (*this)[i][j] /= c;
        return *this;
    }
    Matrix operator/(T const& c) const {
        return Matrix(*this) /= c;
    }
#endif
    friend istream& operator>>(istream& is, Matrix& x) {
        rep (i, x.n) rep (j, x.m) is >> x[i][j];
        return is;
    }
#ifdef LOCAL
    friend string to_s(Matrix const& x) {
        string ret;
        rep (i, x.n) {
            ret += "\n(";
            rep (j, x.m) ret += " " + to_s(x[i][j]);
            ret += " )";
        }
        return ret += "\n";
    }
#endif
};
// <<<

int32_t main() {
    int n, k; cin >> n >> k;

    int N = 2*k*k;
    auto id = [&](int t, int i, int j) {
        return i*k*2 + j*2 + t;
    };
    Matrix<mint> A(N, N);
    rep (x, k) rep (y, k) rep (z, k) {
        if (x == y or y == z or z == x) continue;
        if (not (x < y and y > z) and not (x > y and y < z)) continue;
        A[id(0, x, y)][id(0, y, z)] += 1;
        A[id(1, x, y)][id(1, y, z)] += 1;
        A[id(1, x, y)][id(0, y, z)] += z;
    }

    A = A.pow(n-2);

    mint cnt = 0;
    mint sum = 0;
    rep (x, k) rep (y, k) rep (z, k) rep (w, k) {
        if (x == y) continue;
        cnt += A[id(0, z, w)][id(0, x, y)] * 1 + A[id(0, z, w)][id(1, x, y)] * (x + y);
        sum += A[id(1, z, w)][id(0, x, y)] * 1 + A[id(1, z, w)][id(1, x, y)] * (x + y);
    }
    cout << cnt << " " << sum << '\n';


}
0