結果
問題 | No.1624 三角形の反射 |
ユーザー | null |
提出日時 | 2021-05-27 01:45:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,189 bytes |
コンパイル時間 | 7,956 ms |
コンパイル使用メモリ | 471,820 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-18 16:35:16 |
合計ジャッジ時間 | 11,671 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 113 ms
6,812 KB |
testcase_01 | AC | 114 ms
6,940 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
コンパイルメッセージ
main.cpp:136:9: warning: #pragma once in main file 136 | #pragma once | ^~~~
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> #include <array> #include <chrono> //#pragma GCC target("arch=skylake-avx512") #pragma GCC target("avx2") //#pragma GCC optimize("O3") #pragma GCC optimize("Ofast") #pragma GCC target("sse4") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) #define printLdb(a) printf("%.50Lf\n", a) #define printdbd(a) printf("%.16lf\n", a) #define prints(s) printf("%s\n", s.c_str()) #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-6; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> inline T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> inline T chmax(T& a, const T& b) { if (a < b)a = b; return a; } //cpp_int #if __has_include(<boost/multiprecision/cpp_int.hpp>) #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using namespace boost::multiprecision; #else using cpp_int = ll; #endif //atcoder library #if __has_include(<atcoder/all>) #include <atcoder/all> //using namespace atcoder; #endif /* random_device seed_gen; mt19937 engine(seed_gen()); uniform_int_distribution dist(1, 100); */ /*----------------------------------------------------------------------------------*/ #pragma once namespace geometry { using Real = double; const Real EPS = 1e-8; const Real PI = acos(static_cast<Real>(-1)); enum { OUT, ON, IN }; inline int sign(const Real& r) { return r <= -EPS ? -1 : r >= EPS ? 1 : 0; } inline bool equals(const Real& a, const Real& b) { return sign(a - b) == 0; } } namespace geometry { using Point = complex< Real >; istream& operator>>(istream& is, Point& p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream& operator<<(ostream& os, const Point& p) { return os << real(p) << " " << imag(p); } Point operator*(const Point& p, const Real& d) { return Point(real(p) * d, imag(p) * d); } // rotate point p counterclockwise by theta rad Point rotate(Real theta, const Point& p) { return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p)); } Real cross(const Point& a, const Point& b) { return real(a) * imag(b) - imag(a) * real(b); } Real dot(const Point& a, const Point& b) { return real(a) * real(b) + imag(a) * imag(b); } bool compare_x(const Point& a, const Point& b) { return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b); } bool compare_y(const Point& a, const Point& b) { return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b); } using Points = vector< Point >; } namespace geometry { struct Line { Point a, b; Line() = default; Line(const Point& a, const Point& b) : a(a), b(b) {} Line(const Real& A, const Real& B, const Real& C) { // Ax+By=C if (equals(A, 0)) { assert(!equals(B, 0)); a = Point(0, C / B); b = Point(1, C / B); } else if (equals(B, 0)) { a = Point(C / A, 0); b = Point(C / A, 1); } else { a = Point(0, C / B); b = Point(C / A, 0); } } friend ostream& operator<<(ostream& os, Line& l) { return os << l.a << " to " << l.b; } friend istream& operator>>(istream& is, Line& l) { return is >> l.a >> l.b; } }; using Lines = vector< Line >; } namespace geometry { // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A bool is_parallel(const Line& a, const Line& b) { return equals(cross(a.b - a.a, b.b - b.a), 0.0); } } namespace geometry { // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C constexpr int COUNTER_CLOCKWISE = +1; constexpr int CLOCKWISE = -1; constexpr int ONLINE_BACK = +2; // c-a-b constexpr int ONLINE_FRONT = -2; // a-b-c constexpr int ON_SEGMENT = 0; // a-c-b int ccw(const Point& a, Point b, Point c) { b = b - a, c = c - a; if (sign(cross(b, c)) == +1) return COUNTER_CLOCKWISE; if (sign(cross(b, c)) == -1) return CLOCKWISE; if (sign(dot(b, c)) == -1) return ONLINE_BACK; if (norm(b) < norm(c)) return ONLINE_FRONT; return ON_SEGMENT; } } namespace geometry { struct Segment : Line { Segment() = default; using Line::Line; }; using Segments = vector< Segment >; } namespace geometry { bool is_intersect_ss(const Segment& s, const Segment& t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; } } namespace geometry { bool is_intersect_sp(const Segment& s, const Point& p) { return ccw(s.a, s.b, p) == ON_SEGMENT; } } using namespace geometry; int main() { int a, b; { int c, d; scanf("%d.%d", &c, &d); c *= 1000; a = c + d; b = 1000; int g = gcd(a, b); a /= g; b /= g; } { char c; if (b % 2) { if (a % 2)c = 'A'; else c = 'B'; } else { if (a % 2)c = 'C'; else c = 'A'; } printf("%c ", c); } int ans = a + b - 2; Segment p; p = Segment(Point(0, 0), Point(b, a)); for (int i = -1000001; i <= 1000001; i += 2) { ans += is_intersect_ss(p, Segment(Point(i, 0), Point(0, i))); ans -= is_intersect_sp(Segment(Point(i, 0), Point(0, i)), Point(b, a)); } for (int i = -1000001; i <= 1000001; i += 2) { ans += is_intersect_ss(p, Segment(Point(i, 0), Point(0, -i))); ans -= is_intersect_sp(Segment(Point(i, 0), Point(0, -i)), Point(b, a)); } printf("%d\n", ans); Please AC; }