結果

問題 No.1624 三角形の反射
ユーザー nullnull
提出日時 2021-05-27 02:30:46
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 66 ms / 2,000 ms
コード長 7,525 bytes
コンパイル時間 10,086 ms
コンパイル使用メモリ 473,740 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-02 09:48:58
合計ジャッジ時間 9,598 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 12 ms
6,944 KB
testcase_04 AC 66 ms
6,944 KB
testcase_05 AC 4 ms
6,944 KB
testcase_06 AC 3 ms
6,940 KB
testcase_07 AC 29 ms
6,940 KB
testcase_08 AC 7 ms
6,940 KB
testcase_09 AC 10 ms
6,944 KB
testcase_10 AC 48 ms
6,944 KB
testcase_11 AC 30 ms
6,944 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 10 ms
6,940 KB
testcase_14 AC 3 ms
6,944 KB
testcase_15 AC 6 ms
6,940 KB
testcase_16 AC 8 ms
6,940 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 7 ms
6,944 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 1 ms
6,944 KB
testcase_22 AC 1 ms
6,940 KB
testcase_23 AC 4 ms
6,940 KB
testcase_24 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:136:9: warning: #pragma once in main file
  136 | #pragma once
      |         ^~~~

ソースコード

diff #

/*
このコード、と~おれ!
Be accepted!
∧_∧ 
(。・ω・。)つ━☆・*。
⊂   ノ    ・゜+.
 しーJ   °。+ *´¨)
          .· ´¸.·*´¨) ¸.·*¨)
		            (¸.·´ (¸.·'* ☆
*/

#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
#include <array>
#include <chrono>

//#pragma GCC target("arch=skylake-avx512")
#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse4")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define repeat(i, n, m) for(int i = n; i < (m); ++i)
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a)
#define printLdb(a) printf("%.50Lf\n", a)
#define printdbd(a) printf("%.16lf\n", a)
#define prints(s) printf("%s\n", s.c_str())
#define all(x) (x).begin(), (x).end()
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d))

using ll = long long;
using ull = unsigned long long;

constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1e9 + 7;
constexpr ll mod = 998244353;
constexpr long double eps = 1e-6;
const long double PI = acosl(-1.0L);

using namespace std;

void scans(string& str) {
	char c;
	str = "";
	scanf("%c", &c);
	if (c == '\n')scanf("%c", &c);
	while (c != '\n' && c != -1 && c != ' ') {
		str += c;
		scanf("%c", &c);
	}
}

void scanc(char& str) {
	char c;
	scanf("%c", &c);
	if (c == -1)return;
	while (c == '\n') {
		scanf("%c", &c);
	}
	str = c;
}

double acot(double x) {
	return PI / 2 - atan(x);
}

ll LSB(ll n) { return (n & (-n)); }

template<typename T>
inline T chmin(T& a, const T& b) {
	if (a > b)a = b;
	return a;
}

template<typename T>
inline T chmax(T& a, const T& b) {
	if (a < b)a = b;
	return a;
}

//cpp_int
#if __has_include(<boost/multiprecision/cpp_int.hpp>)
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using namespace boost::multiprecision;
#else
using cpp_int = ll;
#endif

//atcoder library
#if __has_include(<atcoder/all>)
#include <atcoder/all>
//using namespace atcoder;
#endif

/*
	random_device seed_gen;
	mt19937 engine(seed_gen());
	uniform_int_distribution dist(1, 100);
*/


/*----------------------------------------------------------------------------------*/

#pragma once

namespace geometry {
	using Real = double;
	const Real EPS = 1e-8;
	const Real PI = acos(static_cast<Real>(-1));

	enum {
		OUT, ON, IN
	};

	inline int sign(const Real& r) {
		return r <= -EPS ? -1 : r >= EPS ? 1 : 0;
	}

	inline bool equals(const Real& a, const Real& b) {
		return sign(a - b) == 0;
	}
}

namespace geometry {
	using Point = complex< Real >;

	istream& operator>>(istream& is, Point& p) {
		Real a, b;
		is >> a >> b;
		p = Point(a, b);
		return is;
	}

	ostream& operator<<(ostream& os, const Point& p) {
		return os << real(p) << " " << imag(p);
	}

	Point operator*(const Point& p, const Real& d) {
		return Point(real(p) * d, imag(p) * d);
	}

	// rotate point p counterclockwise by theta rad
	Point rotate(Real theta, const Point& p) {
		return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));
	}

	Real cross(const Point& a, const Point& b) {
		return real(a) * imag(b) - imag(a) * real(b);
	}

	Real dot(const Point& a, const Point& b) {
		return real(a) * real(b) + imag(a) * imag(b);
	}

	bool compare_x(const Point& a, const Point& b) {
		return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
	}

	bool compare_y(const Point& a, const Point& b) {
		return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
	}

	using Points = vector< Point >;
}

namespace geometry {
	struct Line {
		Point a, b;

		Line() = default;

		Line(const Point& a, const Point& b) : a(a), b(b) {}

		Line(const Real& A, const Real& B, const Real& C) { // Ax+By=C
			if (equals(A, 0)) {
				assert(!equals(B, 0));
				a = Point(0, C / B);
				b = Point(1, C / B);
			}
			else if (equals(B, 0)) {
				a = Point(C / A, 0);
				b = Point(C / A, 1);
			}
			else {
				a = Point(0, C / B);
				b = Point(C / A, 0);
			}
		}

		friend ostream& operator<<(ostream& os, Line& l) {
			return os << l.a << " to " << l.b;
		}

		friend istream& operator>>(istream& is, Line& l) {
			return is >> l.a >> l.b;
		}
	};

	using Lines = vector< Line >;
}

namespace geometry {
	// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
	bool is_parallel(const Line& a, const Line& b) {
		return equals(cross(a.b - a.a, b.b - b.a), 0.0);
	}
}

namespace geometry {
	// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C
	constexpr int COUNTER_CLOCKWISE = +1;
	constexpr int CLOCKWISE = -1;
	constexpr int ONLINE_BACK = +2; // c-a-b
	constexpr int ONLINE_FRONT = -2; // a-b-c
	constexpr int ON_SEGMENT = 0; // a-c-b
	int ccw(const Point& a, Point b, Point c) {
		b = b - a, c = c - a;
		if (sign(cross(b, c)) == +1) return COUNTER_CLOCKWISE;
		if (sign(cross(b, c)) == -1) return CLOCKWISE;
		if (sign(dot(b, c)) == -1) return ONLINE_BACK;
		if (norm(b) < norm(c)) return ONLINE_FRONT;
		return ON_SEGMENT;
	}
}

namespace geometry {
	struct Segment : Line {
		Segment() = default;

		using Line::Line;
	};

	using Segments = vector< Segment >;
}

namespace geometry {
	bool is_intersect_ss(const Segment& s, const Segment& t) {
		return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
			ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
	}
}

namespace geometry {
	bool is_intersect_sp(const Segment& s, const Point& p) {
		return ccw(s.a, s.b, p) == ON_SEGMENT;
	}
}

using namespace geometry;

int main() {

	int a, b;
	{
		int c, d;
		scanf("%d.%d", &c, &d);
		c *= 1000;
		a = c + d;
		b = 1000;
		int g = gcd(a, b);
		a /= g;
		b /= g;
	}
	{
		char c;
		if (b % 2) {
			if (a % 2)c = 'A';
			else c = 'B';
		}
		else {
			if (a % 2)c = 'C';
			else c = 'A';
		}
		printf("%c ", c);
	}
	int ans = a + b - 2;
	Segment l = Segment(Point(0, 0), Point(b, a));
	Point x(1, 0), y(0, 1);
	for (Point p = x, q = y; p.imag() <= a and q.real() <= b; ) {
		ans += is_intersect_ss(l, Segment(p, q));
		ans -= is_intersect_sp(Segment(p, q), Point(b, a));
		rep(i, 2) {
			if (p.real() < b)p += x;
			else p += y;
			if (q.imag() < a)q += y;
			else q += x;
		}
	}
	for (Point p(0, a % 2 ? a : a - 1); p.real() <= b; ) {
		Point q(p.real() - p.imag() + a, a);
		if (q.real() > b) {
			q = Point(b, b + p.imag() - p.real());
		}
		if (p == q) {
			rep(i, 2) {
				if (p.imag() > 0)p -= y;
				else p += x;
			}
			continue;
		}
		ans += is_intersect_ss(l, Segment(p, q));
		ans -= is_intersect_sp(Segment(p, q), Point(b, a));
		rep(i, 2) {
			if (p.imag() > 0)p -= y;
			else p += x;
		}
	}
	printf("%d\n", ans);

	Please AC;
}
0