結果
問題 | No.1521 Playing Musical Chairs Alone |
ユーザー |
![]() |
提出日時 | 2021-05-28 20:33:22 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 21 ms / 2,000 ms |
コード長 | 15,373 bytes |
コンパイル時間 | 3,438 ms |
コンパイル使用メモリ | 181,960 KB |
最終ジャッジ日時 | 2025-01-21 19:08:04 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T, typename V>void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());return vec; }template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']';return os; }#if __cplusplus >= 201703Ltemplate <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); returnis; }template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }#endiftemplate <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os;}template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ',';os << '}'; return os; }template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')';return os; }template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp)os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET <<endl#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ <<COLOR_RESET << endl : cerr)#else#define dbg(x) (x)#define dbgif(cond, x) 0#endiftemplate <int mod> struct ModInt {#if __cplusplus >= 201402L#define MDCONST constexpr#else#define MDCONST#endifusing lint = long long;MDCONST static int get_mod() { return mod; }static int get_primitive_root() {static int primitive_root = 0;if (!primitive_root) {primitive_root = [&]() {std::set<int> fac;int v = mod - 1;for (lint i = 2; i * i <= v; i++)while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < mod; g++) {bool ok = true;for (auto i : fac)if (ModInt(g).pow((mod - 1) / i) == 1) {ok = false;break;}if (ok) return g;}return -1;}();}return primitive_root;}int val;MDCONST ModInt() : val(0) {}MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; }MDCONST ModInt(lint v) { _setval(v % mod + mod); }MDCONST explicit operator bool() const { return val != 0; }MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); }MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }MDCONST bool operator==(const ModInt &x) const { return val == x.val; }MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>friend std::istream &operator>>(std::istream &is, ModInt &x) {lint t;return is >> t, x = ModInt(t), is;}MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }MDCONST ModInt pow(lint n) const {lint ans = 1, tmp = this->val;while (n) {if (n & 1) ans = ans * tmp % mod;tmp = tmp * tmp % mod, n /= 2;}return ans;}static std::vector<long long> facs, invs;MDCONST static void _precalculation(int N) {int l0 = facs.size();if (N <= l0) return;facs.resize(N), invs.resize(N);for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod;long long facinv = ModInt(facs.back()).pow(mod - 2).val;for (int i = N - 1; i >= l0; i--) {invs[i] = facinv * facs[i - 1] % mod;facinv = facinv * i % mod;}}MDCONST lint inv() const {if (this->val < std::min(mod >> 1, 1 << 21)) {while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);return invs[this->val];} else {return this->pow(mod - 2).val;}}MDCONST ModInt fac() const {while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);return facs[this->val];}MDCONST ModInt doublefac() const {lint k = (this->val + 1) / 2;return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()): ModInt(k).fac() * ModInt(2).pow(k);}MDCONST ModInt nCr(const ModInt &r) const {return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac());}ModInt sqrt() const {if (val == 0) return 0;if (mod == 2) return val;if (pow((mod - 1) / 2) != 1) return 0;ModInt b = 1;while (b.pow((mod - 1) / 2) == 1) b += 1;int e = 0, m = mod - 1;while (m % 2 == 0) m >>= 1, e++;ModInt x = pow((m - 1) / 2), y = (*this) * x * x;x *= (*this);ModInt z = b.pow(m);while (y != 1) {int j = 0;ModInt t = y;while (t != 1) j++, t *= t;z = z.pow(1LL << (e - j - 1));x *= z, z *= z, y *= z;e = j;}return ModInt(std::min(x.val, mod - x.val));}};template <int mod> std::vector<long long> ModInt<mod>::facs = {1};template <int mod> std::vector<long long> ModInt<mod>::invs = {0};using mint = ModInt<1000000007>;// Integer convolution for arbitrary mod// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.// input: a (size: n), b (size: m)// return: vector (size: n + m - 1)template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner = false);constexpr int nttprimes[3] = {998244353, 167772161, 469762049};// Integer FFT (Fast Fourier Transform) for ModInt class// (Also known as Number Theoretic Transform, NTT)// is_inverse: inverse transform// ** Input size must be 2^n **template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {int n = a.size();if (n == 1) return;static const int mod = MODINT::get_mod();static const MODINT root = MODINT::get_primitive_root();assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);static std::vector<MODINT> w{1}, iw{1};for (int m = w.size(); m < n / 2; m *= 2) {MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;w.resize(m * 2), iw.resize(m * 2);for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;}if (!is_inverse) {for (int m = n; m >>= 1;) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m] * w[k];a[i] = x + y, a[i + m] = x - y;}}}} else {for (int m = 1; m < n; m *= 2) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m];a[i] = x + y, a[i + m] = (x - y) * iw[k];}}}int n_inv = MODINT(n).inv();for (auto &v : a) v *= n_inv;}}template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {int sz = a.size();assert(a.size() == b.size() and __builtin_popcount(sz) == 1);std::vector<ModInt<MOD>> ap(sz), bp(sz);for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];ntt(ap, false);if (a == b)bp = ap;elsentt(bp, false);for (int i = 0; i < sz; i++) ap[i] *= bp[i];ntt(ap, true);return ap;}long long garner_ntt_(int r0, int r1, int r2, int mod) {using mint2 = ModInt<nttprimes[2]>;static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv();static const long long m01_inv_m2 = mint2(m01).inv();int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val) % mod;}template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {int sz = 1, n = a.size(), m = b.size();while (sz < n + m) sz <<= 1;if (sz <= 16) {std::vector<MODINT> ret(n + m - 1);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];}return ret;}int mod = MODINT::get_mod();if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {a.resize(sz), b.resize(sz);if (a == b) {ntt(a, false);b = a;} elsentt(a, false), ntt(b, false);for (int i = 0; i < sz; i++) a[i] *= b[i];ntt(a, true);a.resize(n + m - 1);} else {std::vector<int> ai(sz), bi(sz);for (int i = 0; i < n; i++) ai[i] = a[i].val;for (int i = 0; i < m; i++) bi[i] = b[i].val;auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);a.resize(n + m - 1);for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); }}return a;}int main() {int N, K, L;cin >> N >> K >> L;vector<mint> trans(N);REP(i, L) trans[(i + 1) % trans.size()] += 1;vector<vector<mint>> dbl;dbl.push_back(trans);while (dbl.size() < 22) {auto v = nttconv(dbl.back(), dbl.back());FOR(i, N, v.size()) v[i % N] += v[i];v.resize(N);dbl.push_back(v);}vector<mint> dp(N);dp[0] = 1;IREP(d, 22) if ((K >> d) & 1) {dp = nttconv(dp, dbl[d]);FOR(i, N, dp.size()) dp[i % N] += dp[i];dp.resize(N);}for (auto x : dp) cout << x << '\n';}