結果

問題 No.1536 仕切り直し
ユーザー torisasami4torisasami4
提出日時 2021-06-06 18:38:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 5,349 bytes
コンパイル時間 1,973 ms
コンパイル使用メモリ 175,580 KB
実行使用メモリ 25,856 KB
最終ジャッジ日時 2024-11-25 06:35:12
合計ジャッジ時間 2,584 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 3 ms
6,820 KB
testcase_03 AC 3 ms
6,820 KB
testcase_04 AC 8 ms
10,272 KB
testcase_05 AC 11 ms
18,452 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 6 ms
9,060 KB
testcase_09 AC 8 ms
11,052 KB
testcase_10 AC 17 ms
25,856 KB
testcase_11 AC 5 ms
6,856 KB
testcase_12 AC 12 ms
18,888 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:323:18: warning: 'p' may be used uninitialized [-Wmaybe-uninitialized]
  323 |         rep(i, m - p) ans.pb(n);
      |                  ^
main.cpp:320:12: note: 'p' was declared here
  320 |         ll p, ma = -1e16;
      |            ^

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
#define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--)
#define siz(x) (ll)x.size()
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = (int)1e9 + 7;

template <class T>
bool chmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return 1;
    }
    return 0;
}

template <class T>
bool chmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return 1;
    }
    return 0;
}

ll gcd(ll a, ll b)
{
	if(a == 0)
		return b;
	if(b == 0)
		return a;
	ll c = a % b;
	while (c != 0)
	{
		a = b;
		b = c;
		c = a % b;
	}
	return b;
}

long long extGCD(long long a, long long b, long long &x, long long &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	long long d = extGCD(b, a % b, y, x);
	y -= a / b * x;
	return d;
}

struct UnionFind
{
	vector<ll> data;
	int num;

	UnionFind(int sz)
	{
		data.assign(sz, -1);
		num = sz;
	}

	bool unite(int x, int y)
	{
		x = find(x), y = find(y);
		if (x == y)
			return (false);
		if (data[x] > data[y])
			swap(x, y);
		data[x] += data[y];
		data[y] = x;
		num--;
		return (true);
	}

	int find(int k)
	{
		if (data[k] < 0)
			return (k);
		return (data[k] = find(data[k]));
	}

	ll size(int k)
	{
		return (-data[find(k)]);
	}
};

ll M = 1000000007;

template <int mod>
struct ModInt
{
	int x;

	ModInt() : x(0) {}

	ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

	ModInt &operator+=(const ModInt &p)
	{
		if ((x += p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator-=(const ModInt &p)
	{
		if ((x += mod - p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator*=(const ModInt &p)
	{
		x = (int)(1LL * x * p.x % mod);
		return *this;
	}

	ModInt &operator/=(const ModInt &p)
	{
		*this *= p.inverse();
		return *this;
	}

	ModInt operator-() const { return ModInt(-x); }

	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

	bool operator==(const ModInt &p) const { return x == p.x; }

	bool operator!=(const ModInt &p) const { return x != p.x; }

	ModInt inverse() const
	{
		int a = x, b = mod, u = 1, v = 0, t;
		while (b > 0)
		{
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}

	ModInt pow(int64_t n) const
	{
		ModInt ret(1), mul(x);
		while (n > 0)
		{
			if (n & 1)
				ret *= mul;
			mul *= mul;
			n >>= 1;
		}
		return ret;
	}

	friend ostream &operator<<(ostream &os, const ModInt &p)
	{
		return os << p.x;
	}

	friend istream &operator>>(istream &is, ModInt &a)
	{
		int64_t t;
		is >> t;
		a = ModInt<mod>(t);
		return (is);
	}

	static int get_mod() { return mod; }
};

using mint = ModInt<mod>;

mint mpow(mint x, ll n)
{
	mint ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans *= x;
		x *= x;
		n = n >> 1;
	}
	return ans;
}

ll mpow2(ll x, ll n, ll mod)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % mod;
		x = x * x % mod;
		n = n >> 1;
	}
	return ans;
}

vector<mint> fac;
vector<mint> ifac;

void setcomb(int sz = 2000010)
{
	fac.assign(sz + 1, 0);
	ifac.assign(sz + 1, 0);
	fac[0] = 1;
	for (ll i = 0; i < sz; i++)
	{
		fac[i + 1] = fac[i] * (i + 1); // n!(mod M)
	}
	ifac[sz] = fac[sz].inverse();
	for (ll i = sz; i > 0; i--)
	{
		ifac[i - 1] = ifac[i] * i;
	}
}
mint comb(ll a, ll b)
{
	if(fac.size() == 0)
		setcomb();
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	return ifac[a - b] * ifac[b] * fac[a];
}

mint perm(ll a, ll b)
{
	if(fac.size() == 0)
		setcomb();
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	return fac[a] * ifac[a - b];
}

long long modinv(long long a)
{
	long long b = M, u = 1, v = 0;
	while (b)
	{
		long long t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= M;
	if (u < 0)
		u += M;
	return u;
}

ll modinv2(ll a, ll mod)
{
	ll b = mod, u = 1, v = 0;
	while (b)
	{
		ll t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= mod;
	if (u < 0)
		u += mod;
	return u;
}

int main(){
	ios::sync_with_stdio(false);
	std::cin.tie(nullptr);

	ll n, m;
	cin >> n >> m;
	ll a[n];
	rep(i, n) cin >> a[i];
	ll dp[n + 1][m + 1];
	rep(i, n + 1) rep(j, m + 1) dp[i][j] = -1e16;
	dp[0][0] = 0, dp[0][1] = 0;
	rep(i,n){
		rep(j,m + 1){
			ll val = dp[i][j];
			if(j%2)
				val -= a[i];
			else
				val += a[i];
			chmax(dp[i + 1][j], val);
			if(j < m)
				chmax(dp[i + 1][j + 1], val);
		}
	}
	ll p, ma = -1e16;
	rep(j, m + 1) if (chmax(ma, dp[n][j])) p = j;
	vector<ll> ans;
	rep(i, m - p) ans.pb(n);
	rep2(i,n){
		if(p > 0){
			if(dp[i][p-1] + a[i] * ((p-1)%2 ? -1 : 1) == ma){
				ans.pb(i + 1);
				ma = dp[i][--p];
				continue;
			}
		}
		ma = dp[i][p];
	}
	if(p)
		ans.pb(0);
	reverse(all(ans));
	rep(i, ans.size()) cout << ans[i] << '\n';
}
0