結果
| 問題 |
No.1541 ゅゅさんのテスト勉強
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2021-06-06 19:30:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 2,000 ms |
| コード長 | 8,359 bytes |
| コンパイル時間 | 2,599 ms |
| コンパイル使用メモリ | 220,280 KB |
| 最終ジャッジ日時 | 2025-01-22 04:17:12 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 31 |
ソースコード
#define MOD_TYPE 2
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr ld PI = acos(-1.0);
constexpr ld EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
// --------------------------------------
namespace atcoder
{
namespace internal
{
template <class T>
struct simple_queue
{
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T &t) { payload.push_back(t); }
T &front() { return payload[pos]; }
void clear()
{
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
namespace atcoder
{
template <class Cap>
struct mf_graph
{
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap)
{
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to)
to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge
{
int from, to;
Cap cap, flow;
};
edge get_edge(int i)
{
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges()
{
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++)
{
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow)
{
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto &_e = g[pos[i].first][pos[i].second];
auto &_re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t)
{
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit)
{
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty())
{
int v = que.front();
que.pop();
for (auto e : g[v])
{
if (e.cap == 0 || level[e.to] >= 0)
continue;
level[e.to] = level[v] + 1;
if (e.to == t)
return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s)
return up;
Cap res = 0;
int level_v = level[v];
for (int &i = iter[v]; i < int(g[v].size()); i++)
{
_edge &e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0)
continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0)
continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up)
break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit)
{
bfs();
if (level[t] == -1)
break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit)
{
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f)
break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s)
{
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty())
{
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p])
{
if (e.cap && !visited[e.to])
{
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge
{
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
// https://theory-and-me.hatenablog.com/entry/2020/03/13/180935
struct submodular : atcoder::mf_graph<ll>
{
int s, t, N, add_num;
ll sum = 0;
// 3変数の辺を追加する場合、頂点は多めにとる
submodular(int n, int add = 2) : atcoder::mf_graph<ll>(n + add)
{
s = n, t = n + 1, N = n + add, add_num = n + 2;
}
void add_edge1(int i, ll c0, ll c1)
{
if (c0 <= c1)
this->add_edge(s, i, c1 - c0), sum += c0;
else
this->add_edge(i, t, c0 - c1), sum += c1;
}
void add_edge2(int i, int j, ll c00, ll c01, ll c10, ll c11)
{
sum += c00;
add_edge1(i, 0, c10 - c00);
add_edge1(j, 0, c11 - c10);
this->add_edge(i, j, c01 + c10 - c00 - c11);
}
void add_edge3(int i, int j, array<array<array<ll, 2>, 2>, 2> &c)
{
assert(add_num < N);
// 後で書く
}
inline ll calc() { return sum + this->flow(s, t); }
};
void solve()
{
int n;
ll m;
cin >> n >> m;
vector<int> k(n);
vector<ll> c(n);
vector<vector<int>> a(n);
vector<vector<ll>> b(n);
submodular G(n);
rep(i, n)
{
cin >> k[i] >> c[i];
G.add_edge1(i, 0, -(m - c[i]));
a[i].resize(k[i]);
b[i].resize(k[i]);
rep(j, k[i]) cin >> a[i][j], a[i][j]--;
rep(j, k[i]) cin >> b[i][j];
rep(j, k[i])
{
G.add_edge2(i, a[i][j], 0, 0, 0, -b[i][j]);
}
}
cout << -G.calc() << "\n";
}
int main()
{
solve();
}
stoq