結果
問題 | No.1538 引きこもりさんは引き算が得意。 |
ユーザー |
![]() |
提出日時 | 2021-06-06 20:10:53 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,894 bytes |
コンパイル時間 | 3,124 ms |
コンパイル使用メモリ | 209,124 KB |
最終ジャッジ日時 | 2025-01-22 04:28:22 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 44 WA * 10 |
ソースコード
#define MOD_TYPE 2 #pragma region Macros #include <bits/stdc++.h> using namespace std; #if 0 #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr ld PI = acos(-1.0); constexpr ld EPS = 1e-7; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion // -------------------------------------- void calc(vector<ll> &a, set<ll> &res, set<ll> &p, set<ll> &m) { int n = a.size(); rep(msk, 1 << n) { int bit = __builtin_popcount(msk); int pow3 = 1; rep(i, bit) pow3 *= 3; rep(pp, pow3) { int t = pp; ll sum = 0; rep(i, n) { if (msk & (1 << i)) { if (t % 3 == 0) sum += a[i]; else if (t % 3 == 2) sum -= a[i]; t /= 3; } } if (pp == 0) p.insert(sum); else if (pp == pow3 - 1) m.insert(sum); else res.insert(sum); } } } void solve() { int n; ll k; cin >> n >> k; vector<ll> a(n); vector<ll> L, R; rep(i, n) { cin >> a[i]; if (a[i] == k) { Yes(1); return; } if (i < n / 2) L.push_back(a[i]); else R.push_back(a[i]); } set<ll> X, Y, p[2], m[2]; calc(L, X, p[0], m[0]), calc(R, Y, p[1], m[1]); for (auto t : X) { if (Y.count(k - t) or p[1].count(k - t) or m[1].count(k - t)) { Yes(1); return; } } for (auto t : Y) { if (X.count(k - t) or p[0].count(k - t) or m[0].count(k - t)) { Yes(1); return; } } for (auto t : p[0]) { if (m[1].count(t)) { Yes(1); return; } } for (auto t : p[1]) { if (m[0].count(t)) { Yes(1); return; } } Yes(0); } int main() { solve(); }