結果
| 問題 | 
                            No.1538 引きこもりさんは引き算が得意。
                             | 
                    
| コンテスト | |
| ユーザー | 
                             stoq
                         | 
                    
| 提出日時 | 2021-06-06 20:21:49 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 85 ms / 2,000 ms | 
| コード長 | 3,801 bytes | 
| コンパイル時間 | 2,635 ms | 
| コンパイル使用メモリ | 208,484 KB | 
| 最終ジャッジ日時 | 2025-01-22 04:30:21 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 54 | 
ソースコード
#define MOD_TYPE 2
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr ld PI = acos(-1.0);
constexpr ld EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
  io_init()
  {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
  if (a > b)
  {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
  if (a < b)
  {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b)
{
  return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
  fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
  os << p.first << " " << p.second;
  return os;
}
#pragma endregion
// --------------------------------------
void calc(vector<ll> &a, set<ll> &res, set<ll> &p, set<ll> &m)
{
  int n = a.size();
  REP(msk, 1, 1 << n)
  {
    for (int msk2 = msk; msk2 > 0; msk2 = (msk2 - 1) & msk)
    {
      ll sum = 0;
      rep(i, n)
      {
        if (!(msk & (1 << i)))
          continue;
        if (msk2 & (1 << i))
          sum += a[i];
        else
          sum -= a[i];
      }
      if (msk2 == msk)
        p.insert(sum), m.insert(-sum);
      else
        res.insert(sum);
    }
  }
}
void solve()
{
  int n;
  ll k;
  cin >> n >> k;
  vector<ll> a(n);
  vector<ll> L, R;
  rep(i, n)
  {
    cin >> a[i];
    if (a[i] == k)
    {
      Yes(1);
      return;
    }
    if (i < n / 2)
      L.push_back(a[i]);
    else
      R.push_back(a[i]);
  }
  set<ll> X, Y, p[2], m[2];
  calc(L, X, p[0], m[0]), calc(R, Y, p[1], m[1]);
  for (auto t : X)
  {
    if (Y.count(k - t) or p[1].count(k - t) or m[1].count(k - t))
    {
      Yes(1);
      return;
    }
  }
  for (auto t : Y)
  {
    if (X.count(k - t) or p[0].count(k - t) or m[0].count(k - t))
    {
      Yes(1);
      return;
    }
  }
  for (auto t : p[0])
  {
    if (m[1].count(k - t))
    {
      Yes(1);
      return;
    }
  }
  for (auto t : p[1])
  {
    if (m[0].count(k - t))
    {
      Yes(1);
      return;
    }
  }
  Yes(X.count(k) or Y.count(k));
}
int main()
{
  solve();
}
            
            
            
        
            
stoq