結果
| 問題 |
No.1526 Sum of Mex 2
|
| ユーザー |
emthrm
|
| 提出日時 | 2021-06-08 19:22:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 227 ms / 3,000 ms |
| コード長 | 9,709 bytes |
| コンパイル時間 | 2,620 ms |
| コンパイル使用メモリ | 209,932 KB |
| 最終ジャッジ日時 | 2025-01-22 04:56:39 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 32 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T>
struct LazySegmentTree {
using Monoid = typename T::Monoid;
using OperatorMonoid = typename T::OperatorMonoid;
LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}
LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {
while ((1 << height) < n) ++height;
p2 = 1 << height;
lazy.assign(p2, T::o_id());
dat.assign(p2 << 1, T::m_id());
for (int i = 0; i < n; ++i) dat[i + p2] = a[i];
for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
}
void set(int idx, const Monoid val) {
idx += p2;
for (int i = height; i > 0; --i) propagate(idx >> i);
dat[idx] = val;
for (int i = 1; i <= height; ++i) {
int current_idx = idx >> i;
dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
}
}
void apply(int idx, const OperatorMonoid val) {
idx += p2;
for (int i = height; i > 0; --i) propagate(idx >> i);
dat[idx] = T::apply(dat[idx], val);
for (int i = 1; i <= height; ++i) {
int current_idx = idx >> i;
dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
}
}
void apply(int left, int right, const OperatorMonoid val) {
if (right <= left) return;
left += p2;
right += p2;
int left_ctz = __builtin_ctz(left);
for (int i = height; i > left_ctz; --i) propagate(left >> i);
int right_ctz = __builtin_ctz(right);
for (int i = height; i > right_ctz; --i) propagate(right >> i);
for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
if (l & 1) sub_apply(l++, val);
if (r & 1) sub_apply(--r, val);
}
for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
}
Monoid get(int left, int right) {
if (right <= left) return T::m_id();
left += p2;
right += p2;
int left_ctz = __builtin_ctz(left);
for (int i = height; i > left_ctz; --i) propagate(left >> i);
int right_ctz = __builtin_ctz(right);
for (int i = height; i > right_ctz; --i) propagate(right >> i);
Monoid l_res = T::m_id(), r_res = T::m_id();
for (; left < right; left >>= 1, right >>= 1) {
if (left & 1) l_res = T::m_merge(l_res, dat[left++]);
if (right & 1) r_res = T::m_merge(dat[--right], r_res);
}
return T::m_merge(l_res, r_res);
}
Monoid operator[](const int idx) {
int node = idx + p2;
for (int i = height; i > 0; --i) propagate(node >> i);
return dat[node];
}
template <typename G>
int find_right(int left, G g) {
if (left >= n) return n;
left += p2;
for (int i = height; i > 0; --i) propagate(left >> i);
Monoid val = T::m_id();
do {
while (!(left & 1)) left >>= 1;
Monoid nx = T::m_merge(val, dat[left]);
if (!g(nx)) {
while (left < p2) {
propagate(left);
left <<= 1;
nx = T::m_merge(val, dat[left]);
if (g(nx)) {
val = nx;
++left;
}
}
return left - p2;
}
val = nx;
++left;
} while (__builtin_popcount(left) > 1);
return n;
}
template <typename G>
int find_left(int right, G g) {
if (right <= 0) return -1;
right += p2;
for (int i = height; i > 0; --i) propagate((right - 1) >> i);
Monoid val = T::m_id();
do {
--right;
while (right > 1 && (right & 1)) right >>= 1;
Monoid nx = T::m_merge(dat[right], val);
if (!g(nx)) {
while (right < p2) {
propagate(right);
right = (right << 1) + 1;
nx = T::m_merge(dat[right], val);
if (g(nx)) {
val = nx;
--right;
}
}
return right - p2;
}
val = nx;
} while (__builtin_popcount(right) > 1);
return -1;
}
private:
int n, p2, height = 0;
std::vector<Monoid> dat;
std::vector<OperatorMonoid> lazy;
void sub_apply(int idx, const OperatorMonoid &val) {
dat[idx] = T::apply(dat[idx], val);
if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
}
void propagate(int idx) {
// assert(1 <= idx && idx < p2);
sub_apply(idx << 1, lazy[idx]);
sub_apply((idx << 1) + 1, lazy[idx]);
lazy[idx] = T::o_id();
}
};
namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};
template <typename T>
struct RangeMaximumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};
template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};
template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return -Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};
template <typename T>
struct RangeSumAndUpdateQuery {
using Monoid = struct {
T sum;
int len;
};
using OperatorMonoid = T;
static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; }
};
template <typename T>
struct RangeSumAndAddQuery {
using Monoid = struct {
T sum;
int len;
};
using OperatorMonoid = T;
static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; }
};
} // monoid
int main() {
int n; cin >> n;
vector<int> a(n); REP(i, n) cin >> a[i], --a[i];
vector<vector<int>> p(n);
for (int i = n - 1; i >= 0; --i) p[a[i]].emplace_back(i);
auto mex = monoid::RangeSumAndUpdateQuery<ll>::init(n);
unordered_set<int> s;
REP(i, n) {
s.emplace(a[i]);
mex[i].sum = (i == 0 ? 0 : mex[i - 1].sum);
while (s.count(mex[i].sum) == 1) ++mex[i].sum;
}
LazySegmentTree<monoid::RangeSumAndUpdateQuery<ll>> seg(mex);
ll ans = 0;
REP(i, n) {
ans += seg.get(i, n).sum;
p[a[i]].pop_back();
int l = i - 1, r = (p[a[i]].empty() ? n : p[a[i]].back());
while (r - l > 1) {
int m = (l + r) / 2;
(seg[m].sum > a[i] ? r : l) = m;
}
seg.apply(r, p[a[i]].empty() ? n : p[a[i]].back(), a[i]);
}
assert(seg.get(0, n).sum == 0);
cout << ans + n * (n + 1LL) / 2 << '\n';
return 0;
}
emthrm