結果
問題 | No.1544 [Cherry 2nd Tune C] Synchroscope |
ユーザー | rniya |
提出日時 | 2021-06-11 21:27:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 832 ms / 2,000 ms |
コード長 | 12,972 bytes |
コンパイル時間 | 2,304 ms |
コンパイル使用メモリ | 207,404 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-14 22:19:40 |
合計ジャッジ時間 | 4,773 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 7 ms
5,248 KB |
testcase_04 | AC | 14 ms
5,248 KB |
testcase_05 | AC | 10 ms
5,248 KB |
testcase_06 | AC | 11 ms
5,248 KB |
testcase_07 | AC | 10 ms
5,248 KB |
testcase_08 | AC | 8 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 12 ms
5,248 KB |
testcase_11 | AC | 7 ms
5,248 KB |
testcase_12 | AC | 7 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | AC | 14 ms
5,248 KB |
testcase_15 | AC | 16 ms
5,248 KB |
testcase_16 | AC | 7 ms
5,248 KB |
testcase_17 | AC | 5 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 3 ms
5,248 KB |
testcase_20 | AC | 13 ms
5,248 KB |
testcase_21 | AC | 4 ms
5,248 KB |
testcase_22 | AC | 3 ms
5,248 KB |
testcase_23 | AC | 20 ms
5,248 KB |
testcase_24 | AC | 22 ms
5,248 KB |
testcase_25 | AC | 22 ms
5,248 KB |
testcase_26 | AC | 21 ms
5,248 KB |
testcase_27 | AC | 23 ms
5,248 KB |
testcase_28 | AC | 23 ms
5,248 KB |
testcase_29 | AC | 21 ms
5,248 KB |
testcase_30 | AC | 22 ms
5,248 KB |
testcase_31 | AC | 22 ms
5,248 KB |
testcase_32 | AC | 22 ms
5,248 KB |
testcase_33 | AC | 832 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 21 ms
5,248 KB |
testcase_39 | AC | 21 ms
5,248 KB |
testcase_40 | AC | 21 ms
5,248 KB |
testcase_41 | AC | 22 ms
5,248 KB |
testcase_42 | AC | 20 ms
5,248 KB |
testcase_43 | AC | 20 ms
5,248 KB |
testcase_44 | AC | 21 ms
5,248 KB |
testcase_45 | AC | 21 ms
5,248 KB |
testcase_46 | AC | 21 ms
5,248 KB |
testcase_47 | AC | 21 ms
5,248 KB |
ソースコード
#define LOCAL #include <bits/stdc++.h> using namespace std; #pragma region Macros typedef long long ll; typedef __int128_t i128; typedef unsigned int uint; typedef unsigned long long ull; #define ALL(x) (x).begin(), (x).end() template <typename T> istream& operator>>(istream& is, vector<T>& v) { for (T& x : v) is >> x; return is; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template <typename T, typename U, typename V> ostream& operator<<(ostream& os, const tuple<T, U, V>& t) { os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')'; return os; } template <typename T, typename U, typename V, typename W> ostream& operator<<(ostream& os, const tuple<T, U, V, W>& t) { os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')'; return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const set<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } void debug_out() { cerr << '\n'; } template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) { cerr << head; if (sizeof...(Tail) > 0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) \ cerr << " "; \ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \ cerr << " "; \ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; } template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; } template <class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; } template <class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; } #pragma endregion #ifndef ATCODER_INTERNAL_MATH_HPP #define ATCODER_INTERNAL_MATH_HPP 1 #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_MATH_HPP #ifndef ATCODER_MATH_HPP #define ATCODER_MATH_HPP 1 #include <algorithm> #include <cassert> #include <tuple> #include <vector> #include "atcoder/internal_math" namespace atcoder { long long pow_mod(long long x, long long n, int m) { assert(0 <= n && 1 <= m); if (m == 1) return 0; internal::barrett bt((unsigned int)(m)); unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m)); while (n) { if (n & 1) r = bt.mul(r, y); y = bt.mul(y, y); n >>= 1; } return r; } long long inv_mod(long long x, long long m) { assert(1 <= m); auto z = internal::inv_gcd(x, m); assert(z.first == 1); return z.second; } // (rem, mod) std::pair<long long, long long> crt(const std::vector<long long>& r, const std::vector<long long>& m) { assert(r.size() == m.size()); int n = int(r.size()); // Contracts: 0 <= r0 < m0 long long r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1) // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1)); // r2 % m0 = r0 // r2 % m1 = r1 // -> (r0 + x*m0) % m1 = r1 // -> x*u0*g = r1-r0 (mod u1*g) (u0*g = m0, u1*g = m1) // -> x = (r1 - r0) / g * inv(u0) (mod u1) // im = inv(u0) (mod u1) (0 <= im < u1) long long g, im; std::tie(g, im) = internal::inv_gcd(m0, m1); long long u1 = (m1 / g); // |r1 - r0| < (m0 + m1) <= lcm(m0, m1) if ((r1 - r0) % g) return {0, 0}; // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1) long long x = (r1 - r0) / g % u1 * im % u1; // |r0| + |m0 * x| // < m0 + m0 * (u1 - 1) // = m0 + m0 * m1 / g - m0 // = lcm(m0, m1) r0 += x * m0; m0 *= u1; // -> lcm(m0, m1) if (r0 < 0) r0 += m0; } return {r0, m0}; } long long floor_sum(long long n, long long m, long long a, long long b) { assert(0 <= n && n < (1LL << 32)); assert(1 <= m && m < (1LL << 32)); unsigned long long ans = 0; if (a < 0) { unsigned long long a2 = internal::safe_mod(a, m); ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m); a = a2; } if (b < 0) { unsigned long long b2 = internal::safe_mod(b, m); ans -= 1ULL * n * ((b2 - b) / m); b = b2; } return ans + internal::floor_sum_unsigned(n, m, a, b); } } // namespace atcoder #endif // ATCODER_MATH_HPP const int INF = 1e9; const long long IINF = 1e18; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const char dir[4] = {'D', 'R', 'U', 'L'}; const long long MOD = 1000000007; // const long long MOD = 998244353; int main() { cin.tie(0); ios::sync_with_stdio(false); int N, M; cin >> N >> M; vector<int> A(N), B(M); cin >> A >> B; vector<ll> r(2), m(2); m[0] = N, m[1] = M; ll ans = IINF; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (A[i] != B[j]) continue; r[0] = i, r[1] = j; pair<ll, ll> res = atcoder::crt(r, m); if (res.second != 0) chmin(ans, res.first); } } cout << (ans == IINF ? -1 : ans + 1) << '\n'; return 0; }