結果

問題 No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率
ユーザー LayCurseLayCurse
提出日時 2021-06-11 21:37:12
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 87 ms / 2,000 ms
コード長 13,013 bytes
コンパイル時間 3,120 ms
コンパイル使用メモリ 229,288 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-15 00:47:16
合計ジャッジ時間 5,228 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 6 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 3 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 3 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,824 KB
testcase_13 AC 18 ms
6,820 KB
testcase_14 AC 12 ms
6,816 KB
testcase_15 AC 7 ms
6,816 KB
testcase_16 AC 8 ms
6,816 KB
testcase_17 AC 8 ms
6,820 KB
testcase_18 AC 8 ms
6,816 KB
testcase_19 AC 4 ms
6,816 KB
testcase_20 AC 50 ms
6,816 KB
testcase_21 AC 7 ms
6,820 KB
testcase_22 AC 3 ms
6,816 KB
testcase_23 AC 87 ms
6,820 KB
testcase_24 AC 87 ms
6,820 KB
testcase_25 AC 87 ms
6,820 KB
testcase_26 AC 87 ms
6,824 KB
testcase_27 AC 87 ms
6,816 KB
testcase_28 AC 86 ms
6,820 KB
testcase_29 AC 87 ms
6,816 KB
testcase_30 AC 87 ms
6,816 KB
testcase_31 AC 87 ms
6,816 KB
testcase_32 AC 87 ms
6,816 KB
testcase_33 AC 82 ms
6,816 KB
testcase_34 AC 9 ms
6,816 KB
testcase_35 AC 9 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void rd(Modint &x){
  int i;
  rd(i);
  x=i;
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> struct Matrix{
  int r;
  int c;
  int mem;
  T*dat;
  Matrix(){
    r=c=mem = 0;
  }
  Matrix(const int rr, const int cc){
    if(rr == 0 || cc == 0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    mem = r * c;
    if(mem > 0){
      dat = new T[mem];
    }
  }
  Matrix(const Matrix<T> &a){
    int i;
    r = a.r;
    c = a.c;
    mem = r * c;
    dat = new T[mem];
    for(i=(0);i<(mem);i++){
      dat[i] = a.dat[i];
    }
  }
  ~Matrix(){
    if(mem){
      delete [] dat;
    }
  }
  void changeSize(const int rr, const int cc){
    if(rr==0 || cc==0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    if(mem < r*c){
      if(mem){
        delete [] dat;
      }
      mem = r*c;
      dat = new T[mem];
    }
  }
  Matrix<T>& operator=(const Matrix<T> &a){
    int i;
    int j;
    r = a.r;
    c = a.c;
    j = r * c;
    changeSize(r,c);
    for(i=(0);i<(j);i++){
      dat[i] = a.dat[i];
    }
    return *this;
  }
  Matrix<T>& operator=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] = 0;
    }
    j =min_L(r, c);
    for(i=(0);i<(j);i++){
      dat[i*c+i] = a;
    }
    return *this;
  }
  Matrix<T>& operator+=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] += a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator+(const Matrix<T> &a){
    return Matrix<T>(*this) += a;
  }
  Matrix<T>& operator-=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] -= a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator-(const Matrix<T> &a){
    return Matrix<T>(*this) -= a;
  }
  Matrix<T>& operator*=(const Matrix<T> &a){
    int i;
    int j;
    int k;
    int x;
    T*m;
    if(r==0 || c!=a.r){
      changeSize(0,0);
      return *this;
    }
    m = (T*)wmem;
    x = r * a.c;
    for(i=(0);i<(x);i++){
      m[i] = 0;
    }
    for(i=(0);i<(r);i++){
      for(k=(0);k<(c);k++){
        for(j=(0);j<(a.c);j++){
          m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j];
        }
      }
    }
    changeSize(r, a.c);
    for(i=(0);i<(x);i++){
      dat[i] = m[i];
    }
    return *this;
  }
  Matrix<T> operator*(const Matrix<T> &a){
    return Matrix<T>(*this) *= a;
  }
  Matrix<T>& operator*=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const long long a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const double a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  inline T* operator[](const int a){
    return dat+a*c;
  }
}
;
template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){
  return Matrix<T>(b)*=a;
}
template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){
  int i;
  int j;
  Matrix<T> res;
  res.changeSize(a.r, a.c);
  res = 1;
  while(b){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    a *= a;
  }
  return res;
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
int S;
int T;
int K;
Modint P1;
Modint P2;
Modint MA;
Modint NA;
Modint MB;
Modint NB;
Matrix<Modint> mt;
Modint sp1[120];
Modint sp2[120];
int main(){
  int i;
  wmem = memarr;
  int c;
  Modint res1;
  Modint res2;
  Modint p;
  Modint f;
  rd(MA);
  rd(NA);
  rd(S);
  rd(MB);
  rd(NB);
  rd(T);
  rd(K);
  P1 = MA / NA;
  P2 = MB / NB;
  mt.changeSize(S+T+1, S+T+1);
  mt = 0;
  for(i=(0);i<(S+T);i++){
    sp1[i] = ((pow_L(P1,i))) * (1 - P1);
  }
  int Q5VJL1cS;
  cLtraits_try_make_signed<remove_reference<decltype((*((Modint*)NULL)))>::type>::type e98WHCEY;
  if(S+T==0){
    e98WHCEY = 0;
  }
  else{
    e98WHCEY = sp1[0];
    for(Q5VJL1cS=(1);Q5VJL1cS<(S+T);Q5VJL1cS++){
      e98WHCEY += sp1[Q5VJL1cS];
    }
  }
  sp1[S+T] = 1 -e98WHCEY;
  for(i=(0);i<(S+T);i++){
    sp2[i] = ((pow_L(P2,i))) * (1 - P2);
  }
  int WYIGIcGE;
  cLtraits_try_make_signed<remove_reference<decltype((*((Modint*)NULL)))>::type>::type t_ynMSdg;
  if(S+T==0){
    t_ynMSdg = 0;
  }
  else{
    t_ynMSdg = sp2[0];
    for(WYIGIcGE=(1);WYIGIcGE<(S+T);WYIGIcGE++){
      t_ynMSdg += sp2[WYIGIcGE];
    }
  }
  sp2[S+T] = 1 -t_ynMSdg;
  for(i=(0);i<(S+T+1);i++){
    int j;
    for(j=(0);j<(S+T+1);j++){
      int k;
      for(k=(0);k<(S+T+1);k++){
        c = i;
        if(c != 0 && c != S+T){
          c =max_L(0, c - j);
        }
        if(c != 0 && c != S+T){
          c =min_L(S+T, c + k);
        }
        mt[i][c] += sp1[j] * sp2[k];
      }
    }
  }
  (mt = pow_L(mt,K));
  res1 = mt[S][0];
  res2 = mt[S][S+T];
  wt_L(res1);
  wt_L('\n');
  wt_L(res2);
  wt_L('\n');
  return 0;
}
// cLay version 20210611-1 [beta]

// --- original code ---
// #define MD 998244353
// int S, T, K;
// Modint P1, P2, MA, NA, MB, NB;
// Matrix<Modint> mt;
// Modint sp1[120], sp2[120];
// {
//   int c;
//   Modint res1, res2, p, f;
//   rd(MA,NA,S,MB,NB,T,K);
//   P1 = MA / NA;
//   P2 = MB / NB;
//   mt.changeSize(S+T+1, S+T+1);
//   mt = 0;
//   rep(i,S+T) sp1[i] = (P1 ** i) * (1 - P1); sp1[S+T] = 1 - sum(sp1(S+T));
//   rep(i,S+T) sp2[i] = (P2 ** i) * (1 - P2); sp2[S+T] = 1 - sum(sp2(S+T));
//   rep(i,S+T+1){
//     rep(j,S+T+1) rep(k,S+T+1){
//       c = i;
//       if(c != 0 && c != S+T) c = max(0, c - j);
//       if(c != 0 && c != S+T) c = min(S+T, c + k);
//       mt[i][c] += sp1[j] * sp2[k];
//     }
//   }
//   mt **= K;
//   res1 = mt[S][0];
//   res2 = mt[S][S+T];
//   wtLn(res1,res2);
// }
0