結果

問題 No.1549 [Cherry 2nd Tune] BANning Tuple
ユーザー jelljell
提出日時 2021-06-11 21:59:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 60,229 bytes
コンパイル時間 1,736 ms
コンパイル使用メモリ 114,940 KB
実行使用メモリ 6,016 KB
最終ジャッジ日時 2024-05-08 17:42:48
合計ジャッジ時間 10,572 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 13 ms
5,376 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 487 ms
6,016 KB
testcase_08 AC 487 ms
6,016 KB
testcase_09 AC 489 ms
5,888 KB
testcase_10 AC 488 ms
5,760 KB
testcase_11 AC 490 ms
5,888 KB
testcase_12 AC 489 ms
5,760 KB
testcase_13 AC 487 ms
5,888 KB
testcase_14 AC 491 ms
5,760 KB
testcase_15 AC 489 ms
5,760 KB
testcase_16 AC 488 ms
6,016 KB
testcase_17 AC 488 ms
6,016 KB
testcase_18 AC 487 ms
5,760 KB
testcase_19 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "Library\\src\\algebra\\polynomial.hpp"

/**
 * @file polynomial.hpp
 * @brief Polynomial
 */

#include <algorithm>
#include <cassert>
#include <vector>

#line 2 "Library\\lib\\cxx17"

#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#line 2 "Library\\src\\algebra\\ntt.hpp"

/**
 * @file ntt.hpp
 * @brief Number Theoretic Transform
 * @date 2021-02-20
 *
 *
 */

#line 2 "Library\\src\\number_theory\\ext_gcd.hpp"

/**
 * @file ext_gcd.hpp
 * @brief Extended Euclidean Algorithm
 */

#include <tuple>

#line 2 "Library\\src\\utils\\sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#include <cstdint>
#include <iterator>
#include <type_traits>

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};

template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

/**
 * @brief Return type of subscripting ( @c [] ) access.
 */
template <class _Tp>
using subscripted_type =
    typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;

template <class Container>
using element_type = typename std::decay<decltype(
    *std::begin(std::declval<Container&>()))>::type;

template <class _Tp, class = std::nullptr_t>
struct has_begin : std::false_type {};

template <class _Tp>
struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)>
    : std::true_type {};

template <class _Tp, class = void> struct has_mod : std::false_type {};

template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};

template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
    _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;

#endif

template <typename _Tp, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
    _Tp,
    typename std::enable_if<(2 < sizeof(_Tp)) &&
                            (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename _Tp>
struct multiplicable_uint<_Tp,
                          typename std::enable_if<(4 < sizeof(_Tp))>::type> {
  using type = __uint128_t;
};

#endif

template <typename _Tp> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};

template <typename _Tp> struct multiplicable {
  using type = std::conditional_t<
      is_integral_ext<_Tp>::value,
      std::conditional_t<std::is_signed<_Tp>::value,
                         typename multiplicable_int<_Tp>::type,
                         typename multiplicable_uint<_Tp>::type>,
      _Tp>;
};

template <class> struct first_arg { using type = void; };

template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
  using type = _Tp;
};

template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};

template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
    : first_arg<decltype(&_Tp::operator())> {};

}  // namespace workspace
#line 11 "Library\\src\\number_theory\\ext_gcd.hpp"

namespace workspace {

/**
 * @param __a Integer
 * @param __b Integer
 * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b), 0 <= x <
 * |b/g|, -|a/g| < y <= 0. Return (0, 0) if (a, b) = (0, 0).
 */
template <typename _T1, typename _T2> constexpr auto ext_gcd(_T1 __a, _T2 __b) {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);

  using result_type = typename std::make_signed<
      typename std::common_type<_T1, _T2>::type>::type;

  result_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  // Euclidean algorithm
  while (b) {
    result_type t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  // Normalize
  if (a < 0) p = -p, q = -q;
  if (p < 0) p += __b / a, q -= __a / a;

  return std::make_pair(p, q);
}

}  // namespace workspace
#line 2 "Library\\src\\number_theory\\primitive_root.hpp"

/**
 * @file primitive_root.hpp
 * @brief Primitive Root
 * @date 2020-12-28
 */

#line 10 "Library\\src\\number_theory\\primitive_root.hpp"

namespace workspace {

/**
 * @brief Compile time primitive root.
 *
 * @tparam __mod Positive integer
 * @return Minimum positive one if it exists. Otherwise 0.
 */
template <class Tp>
constexpr typename std::enable_if<(is_integral_ext<Tp>::value), Tp>::type
primitive_root(const Tp __mod) noexcept {
  assert(__mod > 0);
  using int_type = typename multiplicable_uint<Tp>::type;

  int_type __r = __mod, __p[16] = {}, *__q = __p;
  for (int_type __i = 2; __i <= __r / __i; ++__i) {
    if (__r % __i) continue;
    *__q++ = __i;
    while (!(__r % __i)) __r /= __i;
  }
  if (__r != 1) *__q++ = __r;

  int_type __tot = __mod;
  for (__q = __p; *__q; *__q++ = 0) (__tot /= *__q) *= *__q - 1;
  __r = __tot, __q = __p + 1, __p[0] = 1;
  for (int_type __i = 2; __i <= __r / __i; ++__i) {
    if (__r % __i) continue;
    *__q++ = __i;
    while (!(__r % __i)) __r /= __i;
  }
  if (__r != 1) *__q++ = __r;

  for (Tp __r = 1; __r != __mod; ++__r) {
    auto __cnt = 0;
    for (__q = __p; *__q; ++__q) {
      int_type __w = 1;
      for (int_type __e = __tot / *__q, __x = __r; __e;
           __e >>= 1, (__x *= __x) %= __mod)
        if (__e & 1) (__w *= __x) %= __mod;
      if (__w == 1 && ++__cnt > 1) break;
    }
    if (__cnt == 1) return __r;
  }

  return 0;
};

}  // namespace workspace
#line 13 "Library\\src\\algebra\\ntt.hpp"

namespace workspace {

namespace ntt_impl {

/**
 * @see
 * https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp
 */

template <class _Tp> struct __coef {
  _Tp sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]

  constexpr __coef() : sum_e{} {
    if (_Tp::mod < 2) return;

    int cnt2 = __builtin_ctz(_Tp::mod - 1);
    _Tp e = 1;
    {
      auto p = (_Tp::mod - 1) >> cnt2;
      _Tp w = primitive_root(_Tp::mod);
      while (p) {
        if (p & 1) e *= w;
        p >>= 1;
        w *= w;
      }
    }

    _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first;
    _Tp es[30] = {}, ies[30] = {};  // es[i]^(2^(2+i)) == 1
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }

    _Tp now = 1;
    for (int i = 0; i <= cnt2 - 2; i++) {
      sum_e[i] = es[i] * now;
      now *= ies[i];
    }
  }
};

template <class _Tp> struct __icoef {
  _Tp sum_ie[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]

  constexpr __icoef() : sum_ie{} {
    if (_Tp::mod < 2) return;

    int cnt2 = __builtin_ctz(_Tp::mod - 1);
    _Tp e = 1;
    {
      auto p = (_Tp::mod - 1) >> cnt2;
      _Tp w = primitive_root(_Tp::mod);
      while (p) {
        if (p & 1) e *= w;
        p >>= 1;
        w *= w;
      }
    }

    _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first;
    _Tp es[30] = {}, ies[30] = {};  // es[i]^(2^(2+i)) == 1
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }

    _Tp now = 1;
    for (int i = 0; i <= cnt2 - 2; i++) {
      sum_ie[i] = ies[i] * now;
      now *= es[i];
    }
  }
};

template <class _Tp> struct __ipow2 {
  _Tp __ip2[30];
  constexpr __ipow2() : __ip2{1, (1 + _Tp::mod) / 2} {
    for (size_t __i = 1; __i + 1 != std::size(__ip2); ++__i)
      __ip2[__i + 1] = __ip2[__i] * __ip2[1];
  }
};

template <class _FIter>
constexpr void ntt(_FIter __first, _FIter __last) noexcept {
  using value_type = typename std::decay<decltype(*__first)>::type;
  constexpr __coef<value_type> _;

  auto __h = __builtin_ctz(std::distance(__first, __last));

  for (ptrdiff_t __p = 1 << __h; __p >>= 1;) {
    value_type now = -1;
    auto __l = __first;

    for (size_t __s = 1 << __h; __l != __last;
         now *= _.sum_e[__builtin_ctz(--__s)]) {
      auto __r = __l + __p;

      for (auto __mid = __r; __l != __mid; ++__l, ++__r) {
        auto __tmp = *__l;
        *__l -= *__r *= now;
        *__r += __tmp;
      }

      __l = __r;
    }
  }
}

template <class _A> constexpr void ntt(_A &a) noexcept {
  ntt(std::begin(a), std::end(a));
}

template <class _FIter>
constexpr void intt(_FIter __first, _FIter __last) noexcept {
  using value_type = typename std::decay<decltype(*__first)>::type;
  constexpr __icoef<value_type> _;

  auto __h = __builtin_ctz(std::distance(__first, __last));

  for (ptrdiff_t __p = 1; __p >> __h ^ 1; __p <<= 1) {
    value_type inow = 1;
    auto __l = __first;

    for (size_t __s = 1 << __h; __l != __last;
         inow *= _.sum_ie[__builtin_ctz(--__s)]) {
      auto __r = __l + __p;

      for (auto __mid = __r; __l != __mid; ++__l, ++__r) {
        auto __tmp = (*__l - *__r) * inow;
        *__l += *__r;
        *__r = __tmp;
      }

      __l = __r;
    }
  }

  constexpr __ipow2<value_type> __;
  while (__first != __last) *--__last *= __.__ip2[__h];
}  // namespace ntt_impl

template <class _A> constexpr void intt(_A &a) noexcept {
  intt(std::begin(a), std::end(a));
}

}  // namespace ntt_impl

using ntt_impl::intt;
using ntt_impl::ntt;

}  // namespace workspace
#line 15 "Library\\src\\algebra\\polynomial.hpp"

namespace workspace {

/**
 * @brief Polynomial.
 *
 * @tparam _Tp Ring structure
 * @tparam _Conv_threshold Threshold for convolution method
 */
template <class _Tp, std::size_t _Conv_threshold = 64>
class polynomial : public std::vector<_Tp> {
  using vec = std::vector<_Tp>;
  using poly = polynomial;

  template <class _Os> friend _Os& operator<<(_Os& __os, const poly& __x) {
    bool __head = true;
    for (const auto& __a : __x) {
      if (!__head) __os << ' ';
      __head = false;
      __os << __a;
    }
    return __os;
  }

 public:
  using vec::vec;
  using size_type = typename vec::size_type;

 protected:
  void _erase_leading_zeros() noexcept {
    auto __i = vec::_M_impl._M_finish;
    while (__i != vec::_M_impl._M_start && *(__i - 1) == _Tp(0)) --__i;
    vec::_M_erase_at_end(__i);
  }

  template <class _Iter> void _dft(_Iter __first, _Iter __last) const noexcept {
    if _CXX17_CONSTEXPR (has_mod<_Tp>::value)
      ntt(__first, __last);
    else {
      // fft(__first, __last);
      assert(0);  // Not implemented!
    }
  }

  template <class _Iter>
  void _idft(_Iter __first, _Iter __last) const noexcept {
    if _CXX17_CONSTEXPR (has_mod<_Tp>::value)
      intt(__first, __last);
    else {
      // ifft(__first, __last);
      assert(0);  // Not implemented!
    }
  }

  void _conv_naive(const poly& __x) noexcept {
    if (vec::_M_impl._M_start == vec::_M_impl._M_finish) return;

    if (__x._M_impl._M_start == __x._M_impl._M_finish) {
      vec::_M_erase_at_end(vec::_M_impl._M_start);
      return;
    }

    vec::_M_default_append(__x._M_impl._M_finish - __x._M_impl._M_start - 1);

    for (auto __i = vec::_M_impl._M_finish; __i-- != vec::_M_impl._M_start;) {
      auto __j = __i, __k = __x._M_impl._M_start;
      *__i *= *__k++;

      while (__j != vec::_M_impl._M_start && __k != __x._M_impl._M_finish)
        *__i += *--__j * *__k++;
    }
  }

  void _conv_dft(poly&& __x) noexcept {
    if _CXX17_CONSTEXPR (has_mod<_Tp>::value)
      _conv_ntt(std::move(__x));
    else {
      // _conv_fft(std::move(__x));
      assert(0);  // Not implemented!
    }
  }

  void _conv_fft(poly&& __x) noexcept;

  void _conv_ntt(poly&& __x) noexcept {
    size_type __n = vec::_M_impl._M_finish - vec::_M_impl._M_start,
              __m = __x._M_impl._M_finish - __x._M_impl._M_start,
              __len = 1 << (32 - __builtin_clz(__n + __m - 1));

    vec::_M_default_append(__len - __n);
    __x._M_default_append(__len - __m);

    ntt(vec::_M_impl._M_start, vec::_M_impl._M_finish);
    ntt(__x._M_impl._M_start, __x._M_impl._M_finish);

    for (auto __i = vec::_M_impl._M_start, __j = __x._M_impl._M_start;
         __i != vec::_M_impl._M_finish; ++__i, ++__j)
      *__i *= std::move(*__j);

    intt(vec::_M_impl._M_start, vec::_M_impl._M_finish);

    vec::_M_erase_at_end(vec::_M_impl._M_start + __n + __m - 1);
  }

  /**
   * @brief
   *
   * @param __x
   * @return Degree of __x.
   */
  size_type _divmod_naive(const poly& __x) {
    auto __xfin = __x._M_impl._M_finish;
    auto __xlen = __x.size();
    while (__xfin != __x._M_impl._M_start && *(__xfin - 1) == _Tp(0))
      --__xfin, --__xlen;

    assert(__xlen != 0);
    _erase_leading_zeros();

    auto __p = vec::_M_impl._M_finish;

    while (size_type(__p - vec::_M_impl._M_start) >= __xlen) {
      --__p;

      auto __src = __xfin;
      auto __dst = __p;

      *__dst /= *--__src;
      while (__src != __x._M_impl._M_start) *--__dst -= *--__src * *__p;
    }

    return std::min<size_type>(__xlen - 1, __p - vec::_M_impl._M_start);
  }

  void _div_naive(const poly& __x) { operator>>=(_divmod_naive(__x)); }

  void _div_doubling(poly&& __x) noexcept {
    _erase_leading_zeros();
    __x._erase_leading_zeros();

    auto __n = vec::_M_impl._M_finish - vec::_M_impl._M_start;
    auto __m = __x._M_impl._M_finish - __x._M_impl._M_start;

    if (__n < __m)
      vec::clear();
    else {
      assert(__m != 0);

      std::reverse(__x._M_impl._M_start, __x._M_impl._M_finish);
      __x = __x.inv(__n - __m + 1);

      std::reverse(vec::_M_impl._M_start, vec::_M_impl._M_finish);
      vec::_M_erase_at_end(vec::_M_impl._M_finish - (__m - 1));

      operator*=(__x).resize(__n - __m + 1);
      std::reverse(vec::_M_impl._M_start, vec::_M_impl._M_finish);
    }
  }

 public:
  /**
   * @return Degree of %polynomial. Return -1 if it equals zero.
   */
  size_type deg() const noexcept { return vec::size() - 1; }

  /**
   * @param __i Not exceeding the degree.
   * @return Coefficient of x^i.
   */
  typename vec::reference operator[](size_type __i) noexcept {
    assert(__i < vec::size());
    return *(vec::_M_impl._M_start + __i);
  }

  /**
   * @param __i Not exceeding the degree.
   * @return Coefficient of x^i.
   */
  typename vec::const_reference operator[](size_type __i) const noexcept {
    assert(__i < vec::size());
    return *(vec::_M_impl._M_start + __i);
  }

  /**
   * @brief Evaluate at given point.
   */
  _Tp eval(const _Tp& __a) const noexcept {
    _Tp __v(0), __p(1);

    for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish;
         ++__i, __p *= __a)
      __v += *__i * __p;

    return __v;
  }

  /**
   * @brief In-place multipoint evaluation.
   */
  template <class _Iter, typename = std::_RequireInputIter<_Iter>>
  _Iter eval(_Iter __first, _Iter __last) const noexcept {
    return eval(__first, __last, __first);
  }

  /**
   * @brief Multipoint evaluation.
   */
  template <class _InputIter, class _OutputIter,
            typename = std::_RequireInputIter<_InputIter>>
  _OutputIter eval(_InputIter __first, _InputIter __last,
                   _OutputIter __result) const noexcept {
    size_type __n = std::distance(__first, __last);
    if (!__n) return __result;

    auto __tree = new poly[__n << 1];

    for (auto __p = __tree + __n; __first != __last; ++__p, ++__first)
      *__p = {-*__first, 1};

    for (size_type __i = __n; --__i;)
      __tree[__i] = __tree[__i << 1] * __tree[__i << 1 | 1];

    __tree[1] = operator%(std::move(__tree[1]));

    for (size_type __i = 2; __i != __n << 1; __i += 2)
      __tree[__i] = __tree[__i >> 1] % std::move(__tree[__i]),
      __tree[__i | 1] =
          std::move(__tree[__i >> 1] %= std::move(__tree[__i | 1]));

    for (size_type __i = 0; __i != __n; ++__i)
      *__result++ = std::move(*__tree[__n + __i]._M_impl._M_start);

    delete[] __tree;

    return __result;
  }

  /**
   * @brief Conversion to bool.
   *
   * @return Whether the %polynomial is not zero.
   */
  operator bool() const noexcept {
    auto __first = vec::_M_impl._M_start, __last = vec::_M_impl._M_finish;

    while (__first != __last)
      if (*__first++ != _Tp(0)) return true;

    return false;
  }

  bool operator==(const poly& __x) const noexcept {
    auto __first1 = vec::_M_impl._M_start, __last1 = vec::_M_impl._M_finish;

    auto __first2 = __x._M_impl._M_start, __last2 = __x._M_impl._M_finish;

    if (__last1 - __first1 < __last2 - __first2) {
      while (__first1 != __last1)
        if (*__first1++ != *__first2++) return false;

      while (__first2 != __last2)
        if (*__first2++ != _Tp(0)) return false;
    }

    else {
      while (__first2 != __last2)
        if (*__first1++ != *__first2++) return false;

      while (__first1 != __last1)
        if (*__first1++ != _Tp(0)) return false;
    }

    return true;
  }

  bool operator!=(const poly& __x) const noexcept { return !operator==(__x); }

  /**
   * @brief Multiply by x^i.
   */
  poly& operator<<=(size_type __i) noexcept {
    vec::insert(vec::begin(), __i, _Tp(0));
    return *this;
  }

  /**
   * @brief Divide by x^i.
   */
  poly& operator>>=(size_type __i) noexcept {
    vec::_M_erase_at_end(
        std::move(vec::_M_impl._M_start + std::min(__i, vec::size()),
                  vec::_M_impl._M_finish, vec::_M_impl._M_start));

    return *this;
  }

  /**
   * @brief Multiply by x^i.
   */
  poly operator<<(size_type __i) const noexcept {
    return poly(*this).operator<<=(__i);
  }

  /**
   * @brief Divide by x^i.
   */
  poly operator>>(size_type __i) const noexcept {
    return poly(*this).operator>>=(__i);
  }

  poly operator+() const noexcept { return *this; }

  poly operator-() const noexcept {
    poly __x = *this;
    for (auto __i = __x._M_impl._M_start; __i != __x._M_impl._M_finish; ++__i)
      *__i = -*__i;
    return __x;
  }

  poly& operator+=(const poly& __x) noexcept {
    if (vec::size() < __x.size())
      vec::_M_default_append(__x.size() - vec::size());

    for (auto __i = vec::_M_impl._M_start, __j = __x._M_impl._M_start;
         __j != __x._M_impl._M_finish; ++__i, ++__j)
      *__i += *__j;

    _erase_leading_zeros();
    return *this;
  }

  poly& operator+=(const _Tp& __c) noexcept {
    if (__c != static_cast<_Tp>(0)) {
      if (vec::_M_impl._M_start == vec::_M_impl._M_finish)
        vec::emplace_back(__c);
      else
        *vec::_M_impl._M_start += __c, _erase_leading_zeros();
    }

    return *this;
  }

  poly& operator-=(const poly& __x) noexcept {
    if (vec::size() < __x.size())
      vec::_M_default_append(__x.size() - vec::size());

    for (auto __i = vec::_M_impl._M_start, __j = __x._M_impl._M_start;
         __j != __x._M_impl._M_finish; ++__i, ++__j)
      *__i -= *__j;

    _erase_leading_zeros();
    return *this;
  }

  poly& operator-=(const _Tp& __c) noexcept {
    if (__c != static_cast<_Tp>(0)) {
      if (vec::_M_impl._M_start == vec::_M_impl._M_finish)
        vec::emplace_back(-__c);
      else
        *vec::_M_impl._M_start -= __c, _erase_leading_zeros();
    }

    return *this;
  }

  poly& operator*=(const poly& __x) noexcept {
    std::min(vec::size(), __x.size()) > _Conv_threshold
        ? _conv_dft(poly(__x))
        : _conv_naive(this == std::addressof(__x) ? poly(__x) : __x);

    return *this;
  }

  poly& operator*=(poly&& __x) noexcept {
    std::min(vec::size(), __x.size()) > _Conv_threshold
        ? _conv_dft(std::move(__x))
        : _conv_naive(__x);

    return *this;
  }

  poly& operator*=(const _Tp& __c) noexcept {
    if (__c == static_cast<_Tp>(0))
      vec::_M_erase_at_end(vec::_M_impl._M_start);
    else
      for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish;
           ++__i)
        *__i *= __c;

    return *this;
  }

  poly& operator/=(const _Tp& __c) noexcept {
    assert(__c != static_cast<_Tp>(0));

    for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish; ++__i)
      *__i /= __c;

    return *this;
  }

  poly rev() const noexcept { return rev(vec::size()); }

  poly rev(size_type __n) const noexcept {
    poly __r(__n);

    auto __src = vec::_M_impl._M_start;
    auto __dst = __r._M_impl._M_finish;
    for (size_type __i = std::min(__n, vec::size()); __i; --__i)
      *--__dst = *__src++;

    return __r;
  }

  poly inv() const noexcept { return inv(vec::size()); }

  /**
   * @brief Multiplicative inverse modulo x^n.
   *
   * @param __n Degree of modulus
   * @return
   */
  poly inv(size_type __n) const noexcept {
    if (!__n) return {};
    assert(*vec::_M_impl._M_start != _Tp(0));

    size_type __len = 1;
    while (__len < __n) __len <<= 1;

    poly __y(__len);
    auto __xp = new _Tp[__len], __yp = __y._M_impl._M_start,
         __zp = new _Tp[__len];

    *__yp = _Tp(1) / *vec::_M_impl._M_start;

    for (size_type __i = 1; __i != __len; __i <<= 1) {
      std::fill(std::copy_n(__yp, __i, __zp), __zp + (__i << 1), _Tp(0));

      _dft(__zp, __zp + (__i << 1));

      std::fill(std::copy_n(vec::_M_impl._M_start,
                            std::min(__i << 1, vec::size()), __xp),
                __xp + (__i << 1), _Tp(0));

      _dft(__xp, __xp + (__i << 1));

      for (size_type __j = 0; __j != (__i << 1); ++__j) __xp[__j] *= -__zp[__j];

      _idft(__xp, __xp + (__i << 1));

      std::fill(std::move(__xp + __i, __xp + (__i << 1), __xp),
                __xp + (__i << 1), _Tp(0));

      _dft(__xp, __xp + (__i << 1));

      for (size_type __j = 0; __j != (__i << 1); ++__j)
        __xp[__j] *= static_cast<_Tp&&>(__zp[__j]);

      _idft(__xp, __xp + (__i << 1));

      std::move(__xp, __xp + __i, __yp + __i);
    }

    delete[] __xp;
    delete[] __zp;

    __y._M_erase_at_end(__yp + __n);
    return __y;
  }

  poly& operator/=(const poly& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      _div_doubling(poly(__x));
    else
      _div_naive(__x);

    return *this;
  }

  poly& operator/=(poly&& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      _div_doubling(std::move(__x));
    else
      _div_naive(__x);

    return *this;
  }

  poly& operator%=(const poly& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      return operator-=(__x.operator*(operator/(__x)));

    vec::_M_erase_at_end(vec::_M_impl._M_start + _divmod_naive(__x));
    return *this;
  }

  template <class _T> poly operator+(_T&& __x) const noexcept {
    return poly(*this).operator+=(std::forward<_T>(__x));
  }

  template <class _T> poly operator-(_T&& __x) const noexcept {
    return poly(*this).operator-=(std::forward<_T>(__x));
  }

  template <class _T> poly operator*(_T&& __x) const noexcept {
    return poly(*this).operator*=(std::forward<_T>(__x));
  }

  template <class _T> poly operator/(_T&& __x) const noexcept {
    return poly(*this).operator/=(std::forward<_T>(__x));
  }

  template <class _T> poly operator%(_T&& __x) const noexcept {
    return poly(*this).operator%=(std::forward<_T>(__x));
  }

  std::pair<poly, poly> divmod(const poly& __x) const {
    if (__x.size() > _Conv_threshold) return {operator/(__x), operator%(__x)};

    poly __rem(*this);
    auto __p = __rem._M_impl._M_start + __rem._divmod_naive(__x);

    poly __quot(__p, __rem._M_impl._M_finish);
    __rem._M_erase_at_end(__p);

    return {__quot, __rem};
  }

  /**
   * @brief Differentiate.
   *
   * @return Derivative.
   */
  poly deriv() const noexcept {
    if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish;
        __s != __f) {
      poly __der(++__s, __f);

      __s = __der._M_impl._M_start, __f = __der._M_impl._M_finish;
      for (_Tp __i(1); __s != __f; ++__s, __i += 1) *__s *= __i;

      __der._erase_leading_zeros();
      return __der;
    }

    return {};
  }

  /**
   * @brief Differentiate at given point.
   *
   * @return Derivative coefficient.
   */
  _Tp deriv(const _Tp& __a) const noexcept {
    _Tp __der(0);

    if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish;
        __s != __f)
      for (_Tp __i(1), __p(1); ++__s != __f; __i += 1, __p *= __a)
        __der += *__s * __i * __p;

    return __der;
  }

  /**
   * @brief Integrate.
   *
   * @return Integral indefinite at the degrees divisible by the characteristic
   * of `_Tp`. Coefficients are set as 0 there.
   */
  poly integ() const noexcept {
    if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish;
        __s != __f) {
      poly __int(__f - __s + 1);

      __f = std::copy(__s, __f, __int._M_impl._M_start + 1);
      __s = __int._M_impl._M_start + 1;
      for (_Tp __i(1); __s != __f; ++__s, __i += 1)
        __i == _Tp(0) ? assert(*__s == _Tp(0)) : void(*__s /= __i);

      return __int;
    }

    return {};
  }

  /**
   * @brief Integrate in given range.
   *
   * @return Definite integral over [0, __a].
   */
  _Tp integ(const _Tp& __a) const noexcept {
    _Tp __int(0);

    auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish;
    for (_Tp __p(__a), __i(1); __s != __f; ++__s, __p *= __a, __i += 1)
      __int += *__s / __i * __p;

    return __int;
  }

  /**
   * @brief Integrate in given range.
   *
   * @return Definite integral over [__a, __b].
   */
  _Tp integ(const _Tp& __a, const _Tp& __b) const noexcept {
    _Tp __int(0);

    auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish;
    for (_Tp __pa(__a), __pb(__b), __i(1); __s != __f;
         ++__s, __pa *= __a, __pb *= __b, __i += 1)
      __int += *__s / __i * (__pb - __pa);

    return __int;
  }
};

/**
 * @brief Polynomial interpolation in O(n log(n)^2) time.
 *
 * @param __first
 * @param __last
 * @return
 */
template <class _InputIter, typename = std::_RequireInputIter<_InputIter>>
auto interpolate(_InputIter __first, _InputIter __last) {
  size_t __n = std::distance(__first, __last);

  auto [__1, __2] =
      typename std::iterator_traits<decltype(__first)>::value_type{};

  using poly = polynomial<decltype(__1)>;

  if (!__n) return poly{};

  struct node {
    poly __all, __lack;
  };

  auto __tree = new node[__n << 1];
  auto __iter = __first;

  for (size_t __i = 0; __i != __n; ++__i) {
    auto&& [__a, __b] = *__iter++;
    __tree[__i + __n].__all = {-__a, 1}, __tree[__i + __n].__lack = {1};
  }

  for (size_t __i = __n; --__i;)
    __tree[__i].__all = __tree[__i << 1].__all * __tree[__i << 1 | 1].__all,
    __tree[__i].__lack =
        __tree[__i << 1].__all * std::move(__tree[__i << 1 | 1].__lack) +
        __tree[__i << 1 | 1].__all * std::move(__tree[__i << 1].__lack);

  for (size_t __i = 2; __i != __n << 1; __i += 2)
    __tree[__i].__lack = __tree[__i >> 1].__lack % __tree[__i].__all,
    __tree[__i | 1].__lack =
        std::move(__tree[__i >> 1].__lack %= __tree[__i | 1].__all);

  for (size_t __i = 0; __i != __n; ++__i) {
    auto&& [__a, __b] = *__first++;
    __tree[__i + __n].__lack[0] =
        std::move(__b) / std::move(__tree[__i + __n].__lack[0]);
  }

  for (size_t __i = __n; --__i;)
    __tree[__i].__lack = std::move(__tree[__i << 1].__all) *
                             std::move(__tree[__i << 1 | 1].__lack) +
                         std::move(__tree[__i << 1 | 1].__all) *
                             std::move(__tree[__i << 1].__lack);

  auto __result = std::move(__tree[1].__lack);

  delete[] __tree;

  return __result;
}

// /**
//  * @brief Rising factorial of degree n.
//  * @return \\prod_{i=0}^{n-1} (x+i)
//  */
// template <class _Tp> auto rising_factorial(_Tp __n) {}

// /**
//  * @brief \\prod_{i=0}^{n-1} (x+i).
//  */
// template <class _Tp> auto rising_factorial(_Tp __n) {
//   return rising_factorial(__n, __n);
// }

// /**
//  * @brief \\prod_{i=0}^{n-1} (x-i) \\bmod x^d.
//  */
// template <class _Tp> auto falling_factorial(_Tp __n, std::size_t __d) {
//   auto __f = rising_factorial(__n, __d);
//   for (std::size_t __i = (__n & 1) ^ 1; __i < __d; __i += 2)
//     __f[__i] = -__f[__i];
//   return __f;
// }

// /**
//  * @brief \\prod_{i=0}^{n-1} (x-i).
//  */
// template <class _Tp> auto falling_factorial(_Tp __n) {
//   return falling_factorial(__n, __n);
// }

/**
 * @brief Generating function of the sum of k-th powers of the first n
 * non-negative integers. O(d \\log d) time in modulo x^d.
 *
 * @return \\sum_{k=0}^{d-1} x^k \\sum_{i=0}^{n-1} i^k.
 */
template <class _Tp> polynomial<_Tp> power_sum(_Tp __n, std::size_t __d) {
  if (!__d) return {};
  polynomial<_Tp> __f(__d), __e(__d);
  __f[0] = __n;
  for (std::size_t __i = 1; __i != __d; ++__i) __f[__i] = __f[__i - 1] * __n;
  _Tp __c{1};
  for (std::size_t __i = 0; __i != __d; ++__i)
    __c /= __i + 1, __f[__i] *= __c, __e[__i] = __c;
  (__f *= __e.inv(__d)).resize(__d);
  __c = 1;
  for (std::size_t __i = 0; __i != __d; __c *= ++__i) __f[__i] *= __c;
  return __f;
}

}  // namespace workspace
#line 2 "Library\\src\\data_structure\\segment_tree\\basic.hpp"

/**
 * @file basic.hpp
 * @brief Segment Tree
 */

#line 10 "Library\\src\\data_structure\\segment_tree\\basic.hpp"

#if __cplusplus >= 201703L
#include <optional>
#endif

#line 2 "Library\\src\\algebra\\system\\monoid.hpp"

/*
 * @file monoid.hpp
 * @brief Monoid
 */

#include <limits>

namespace workspace {

template <class T, class E = T> struct min_monoid {
  using value_type = T;
  static T min, max;
  T value;
  min_monoid() : value(max) {}
  min_monoid(const T &value) : value(value) {}
  operator T() const { return value; }
  min_monoid operator+(const min_monoid &rhs) const {
    return value < rhs.value ? *this : rhs;
  }
  min_monoid operator*(const E &rhs) const;
};

template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;

template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
  using base = min_monoid<T, E>;
  using base::min_monoid;
  max_monoid() : base(base::min) {}
  max_monoid operator+(const max_monoid &rhs) const {
    return !(base::value < rhs.value) ? *this : rhs;
  }
  max_monoid operator*(const E &rhs) const;
};

}  // namespace workspace
#line 2 "Library\\src\\algebra\\system\\operation.hpp"

/**
 * @file operation.hpp
 * @brief Operation Traits
 */

#line 9 "Library\\src\\algebra\\system\\operation.hpp"

namespace workspace {

// Unary `+`
template <class _Tp>
using require_unary_plus = std::enable_if_t<
    std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>;

template <class _Tp, class = void> struct has_unary_plus : std::false_type {};

template <class _Tp>
struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {};

// Unary `-`
template <class _Tp>
using require_unary_minus = std::enable_if_t<
    std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>;

template <class _Tp, class = void> struct has_unary_minus : std::false_type {};

template <class _Tp>
struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {};

// Binary `+`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_plus =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() +
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_plus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `-`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_minus = std::__void_t<decltype(
    std::declval<const _Tp1 &>() - std::declval<const _Tp2 &>())>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_minus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `*`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_multiplies =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() *
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_multiplies : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `/`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_divides =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() /
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_divides : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `%`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_modulus =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() %
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_modulus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>>
    : std::true_type {};

}  // namespace workspace
#line 17 "Library\\src\\data_structure\\segment_tree\\basic.hpp"

namespace workspace {

/**
 * @tparam _Monoid `operator+`, `operator=`
 * @tparam Container_tmpl `operator[]`, `size_type`
 */
template <class _Monoid, class _Endomorphism = void,
          template <class...> class Container_tmpl = std::vector>
class segment_tree {
  static_assert(has_binary_plus<_Monoid>::value,
                "\'_Monoid\' has no proper binary \'operator+\'.");

  constexpr static bool __support_lazy = !std::is_void<_Endomorphism>::value;

#if __cplusplus < 201703L
  struct node_base {
    node_base() = default;
    node_base(_Monoid const &__x) : __v(__x) {}
    operator bool() const { return __f; }
    void operator=(_Monoid const &__x) {
      __v = __x;
      __f = true;
    }
    _Monoid &operator*() { return __v; }
    _Monoid const &operator*() const { return __v; }
    void reset() { __f = false; }

   private:
    _Monoid __v{};
    bool __f{true};
  };
#else
  struct node_base : std::optional<_Monoid> {
    using std::optional<_Monoid>::operator=;
    node_base() : std::optional<_Monoid>(_Monoid{}) {}
  };
#endif

  struct node_lazy : node_base {
    using node_base::operator=;
    std::optional<_Endomorphism> __z;
  };

  using node =
      typename std::conditional<__support_lazy, node_lazy, node_base>::type;

  using container_type = Container_tmpl<node>;

 public:
  using size_type = typename container_type::size_type;
  using difference_type = typename container_type::difference_type;

  class iterator {
    segment_tree *__p;
    size_type __i;

   public:
    using difference_type = segment_tree::difference_type;
    using value_type = _Monoid;
    using reference = _Monoid &;
    using pointer = iterator;
    using iterator_category = std::random_access_iterator_tag;

    /**
     * @brief Construct a new iterator object
     *
     */
    iterator() = default;

    /**
     * @brief Construct a new iterator object
     *
     * @param __p Pointer to a segment tree object
     * @param __i Index
     */
    iterator(segment_tree *__p, size_type __i) : __p(__p), __i(__i) {}

    bool operator==(iterator const &rhs) const {
      return __p == rhs.__p && __i == rhs.__i;
    }
    bool operator!=(iterator const &rhs) const { return !operator==(rhs); }

    bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
    bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
    bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
    bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }

    iterator &operator++() { return ++__i, *this; }
    iterator &operator--() { return --__i, *this; }

    difference_type operator-(iterator const &rhs) const {
      return __i - rhs.__i;
    }

    /**
     * @brief
     *
     * @return reference
     */
    reference operator*() const { return __p->operator[](__i); }
  };

  using value_type = typename iterator::value_type;
  using reference = typename iterator::reference;

  iterator begin() { return {this, 0}; }
  iterator end() { return {this, size_orig}; }

  auto rbegin() { return std::make_reverse_iterator(end()); }
  auto rend() { return std::make_reverse_iterator(begin()); }

 protected:
  size_type size_orig, height, size_ext;
  container_type data;

  node &pull(size_type __i) noexcept {
    if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
    return data[__i];
  }

  void push(size_type __i) {
    if (auto &__lz = data[__i].__z) {
      apply(data[__i << 1], *__lz);
      apply(data[__i << 1 | 1], *__lz);
      __lz.reset();
    }
  }

  void sync(size_type __i) {
    if (!data[__i])
      data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
    else if (data[__i].__z) {
      apply(data[__i << 1], *data[__i].__z);
      apply(data[__i << 1 | 1], *data[__i].__z);
      data[__i].__z.reset();
    }
  }

  template <class _End = _Endomorphism>
  void apply(node &__nd, _End const &endo) {
    *__nd = *__nd * endo;
    __nd.__z = __nd.__z ? *__nd.__z * endo : endo;
  }

  // template <class _End = _Endomorphism>
  // void apply_top(size_t __i, _End const &endo) {
  //   auto &__nd = pull(__i);
  //   *__nd = *__nd * endo;
  //   __nd.__z = __nd.__z ? *__nd.__z * endo : endo;
  // }

  template <class Pred>
  constexpr decltype(std::declval<Pred>()(_Monoid{})) pass_args(
      Pred pred, _Monoid const &_1, [[maybe_unused]] size_type _2) {
    return pred(_1);
  }

  template <class Pred>
  constexpr decltype(std::declval<Pred>()(_Monoid{}, size_type{})) pass_args(
      Pred pred, _Monoid const &_1, size_type _2) {
    return pred(_1, _2);
  }

  template <class Pred>
  size_type left_partition_subtree(size_type __i, _Monoid mono, size_type step,
                                   Pred pred) {
    assert(__i);
    while (__i < size_ext) {
      if constexpr (__support_lazy) push(__i);
      const _Monoid tmp = *pull((__i <<= 1) | 1) + mono;
      if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
        mono = tmp;
      else
        ++__i;
    }
    return ++__i -= size_ext;
  }

  template <class Pred>
  size_type right_partition_subtree(size_type __i, _Monoid mono, size_type step,
                                    Pred pred) {
    assert(__i);
    while (__i < size_ext) {
      if constexpr (__support_lazy) push(__i);
      const _Monoid tmp = mono + *pull(__i <<= 1);
      if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
        ++__i, mono = tmp;
    }
    return (__i -= size_ext) < size_orig ? __i : size_orig;
  }

 public:
  /**
   * @brief Construct a new segment tree object.
   *
   * @param __n Number of elements.
   */
  segment_tree(size_type __n = 0)
      : size_orig{__n},
        height(__n > 1 ? 64 - __builtin_clzll(__n - 1) : 0),
        size_ext{size_type{1} << height} {
    if constexpr (std::is_constructible<container_type, size_t>::value)
      data = container_type(size_ext << 1);
    data[0].reset();
  }

  /**
   * @brief Construct a new segment tree object.
   *
   * @param __n Number of elements.
   * @param __x
   */
  segment_tree(size_type __n, const value_type &__x) : segment_tree(__n) {
    for (auto __i = begin(); __i != end(); ++__i) *__i = __x;
  }

  /**
   * @brief Construct a new segment tree object.
   *
   * @param __n Number of elements.
   * @param __x
   */
  template <class _Tp>
  segment_tree(size_type __n, _Tp &&__x) : segment_tree(__n) {
    for (auto __i = begin(); __i != end(); ++__i) *__i = __x;
  }

  /**
   * @brief Construct a new segment tree object.
   *
   * @param __first
   * @param __last
   */
  template <class _Iterator, typename = std::_RequireInputIter<_Iterator>>
  segment_tree(_Iterator __first, _Iterator __last)
      : segment_tree(std::distance(__first, __last)) {
    for (auto __i = begin(); __first != __last; ++__i, ++__first)
      *__i = *__first;
  }

  /**
   * @brief Conversion to container_type.
   */
  operator Container_tmpl<value_type>() const {
    Container_tmpl<value_type> __c(size());
    for (size_type __i = 0; __i != size(); ++__i)
      __c[__i] = *data[__i | size_ext];
    return __c;
  }

  /**
   * @return Number of elements.
   */
  size_type size() const { return size_orig; }

  /**
   * @return Whether %segment_tree is empty.
   */
  bool empty() const { return !size(); }

  /**
   * @brief Subscripting ( @c [] ) access.
   *
   * @param __i Index of the element
   * @return Reference to the element.
   */
  reference operator[](size_type __i) {
    assert(__i < size_orig);
    reference __ref = *data[__i |= size_ext];
    if constexpr (__support_lazy) {
      for (size_t __h{height}; __h; --__h) {
        push(__i >> __h);
        data[__i >> __h].reset();
      }
    } else {
      while (data[__i >>= 1]) data[__i].reset();
    }
    return __ref;
  }

  /**
   * @param first Left end, inclusive
   * @param last Right end, exclusive
   * @return Sum of elements in the interval.
   */
  value_type fold(size_type first, size_type last) {
    assert(last <= size_orig);
    if (!(first < last)) return {};
    first += size_ext, last += size_ext;
    value_type left{}, right{};
    for (size_t l = first, r = last--; l != r; l >>= 1, r >>= 1) {
      if (l & 1) left = left + *pull(l++);
      if (r & 1) right = *pull(--r) + right;
      if constexpr (__support_lazy) {
        if (data[first >>= 1].__z) left = left * *data[first].__z;
        if (data[last >>= 1].__z) right = right * *data[last].__z;
      }
    }
    if constexpr (__support_lazy) {
      while (first >>= 1, last >>= 1) {
        if (data[first].__z) left = left * *data[first].__z;
        if (data[last].__z) right = right * *data[last].__z;
      }
    }

    // if (first >= last) return _Monoid{};
    // first += size_ext, last += size_ext - 1;
    // _Monoid left{}, right{};
    // for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {
    //   if (l < r) {
    //     if (l & 1) left = left + data[l++];
    //     if (r & 1) right = data[--r] + right;
    //   }
    //   if (first >>= 1, last >>= 1) {
    //     left = left * lazy[first];
    //     right = right * lazy[last];
    //   }
    // }
    // return left + right;

    return left + right;
  }

  /**
   * @return The whole sum.
   */
  value_type fold() { return *pull(1); }

  template <class _End = _Endomorphism>
  void update(size_type first, size_type last, _End const &endo) {
    static_assert(__support_lazy);

    assert(last <= size_orig);
    if (!(first < last)) return;
    first += size_ext, last += size_ext;

    --last;
    for (auto i = height; i; --i) push(first >> i), push(last >> i);
    ++last;

    for (auto l = first, r = last; l < r; l >>= 1, r >>= 1) {
      if (l & 1) apply(pull(l++), endo);
      if (r & 1) apply(pull(--r), endo);
    }

    for (first >>= __builtin_ffs(first); data[first]; first >>= 1)
      data[first].reset();

    for (last >>= __builtin_ffs(last); data[last]; last >>= 1)
      data[last].reset();
  }

  /**
   * @brief Binary search for the partition point.
   * @param right Right fixed end of the interval, exclusive
   * @param pred Predicate in the form of either 'bool(_Monoid)' or
   * 'bool(_Monoid, size_type)'
   * @return Left end of the extremal interval satisfying the condition,
   * inclusive.
   */
  template <class Pred> size_type left_partition(size_type right, Pred pred) {
    assert(right <= size_orig);
    right += size_ext;

    if constexpr (__support_lazy)
      for (size_t i{height}; i; --i) push(right >> i);

    _Monoid mono{};
    for (size_type left{size_ext}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        _Monoid tmp = *pull(--right) + mono;
        if (!pass_args(pred, tmp, (right << step) ^ size_ext))
          return left_partition_subtree(right, mono, step, pred);
        mono = tmp;
      }
    }

    return 0;
  }

  /**
   * @brief Binary search for the partition point.
   * @param left Left fixed end of the interval, inclusive
   * @param pred Predicate in the form of either 'bool(_Monoid)' or
   * 'bool(_Monoid, size_type)'
   * @return Right end of the extremal interval satisfying the condition,
   * exclusive.
   */
  template <class Pred> size_type right_partition(size_type left, Pred pred) {
    assert(left <= size_orig);
    left += size_ext;

    if constexpr (__support_lazy)
      for (size_t i{height}; i; --i) push(left >> i);

    _Monoid mono{};
    for (size_type right{size_ext << 1}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        _Monoid tmp = mono + *pull(left);
        if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
          return right_partition_subtree(left, mono, step, pred);
        mono = tmp;
        ++left;
      }
    }

    return size_orig;
  }
};

template <class _Iterator, typename = std::_RequireInputIter<_Iterator>>
segment_tree(_Iterator, _Iterator)
    -> segment_tree<typename std::iterator_traits<_Iterator>::value_type>;

template <class _Tp, typename = require_binary_plus<_Tp>>
segment_tree(typename segment_tree<_Tp>::size_type, _Tp &&)
    -> segment_tree<_Tp>;

}  // namespace workspace
#line 2 "Library\\src\\modular\\modint.hpp"

/**
 * @file modint.hpp
 *
 * @brief Modular Arithmetic
 */

#line 10 "Library\\src\\modular\\modint.hpp"
#include <iostream>
#line 12 "Library\\src\\modular\\modint.hpp"

#line 2 "Library\\src\\number_theory\\sqrt_mod.hpp"

/**
 * @file sqrt_mod.hpp
 * @brief Tonelli-Shanks Algorithm
 */

#line 2 "Library\\src\\number_theory\\pow_mod.hpp"

/**
 * @file mod_pow.hpp
 * @brief Modular Exponentiation
 */

#line 9 "Library\\src\\number_theory\\pow_mod.hpp"

#line 11 "Library\\src\\number_theory\\pow_mod.hpp"

namespace workspace {

/**
 * @brief Compile time modular exponentiation.
 *
 * @param __x
 * @param __n Exponent
 * @param __mod Modulus
 * @return
 */
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod(
    _Tp __x, _Tp __n, _Tp __mod) noexcept {
  assert(__mod > 0);

  using mul_type = typename multiplicable_uint<_Tp>::type;

  if ((__x %= __mod) < 0) __x += __mod;

  mul_type __y{1};

  while (__n) {
    if (__n & 1) (__y *= __x) %= __mod;
    __x = (mul_type)__x * __x % __mod;
    __n >>= 1;
  }

  return __y;
};

}  // namespace workspace
#line 10 "Library\\src\\number_theory\\sqrt_mod.hpp"

namespace workspace {

/**
 * @brief Compile time modular square root.
 *
 * @param __x
 * @param __mod Modulus
 * @return One if it exists. Otherwise -1.
 */
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
    _Tp __x, _Tp __mod) noexcept {
  assert(__mod > 0);

  using mul_type = typename multiplicable_uint<_Tp>::type;

  if ((__x %= __mod) < 0) __x += __mod;

  if (!__x) return 0;

  if (__mod == 2) return __x;

  if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;

  _Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;

  mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
  while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
  __b = pow_mod<_Tp>(__b, __q, __mod);

  _Tp __shift = 0;

  for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
       __r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
    auto __bsf = __z;

    for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;

    while (++__shift != __bsf) (__b *= __b) %= __mod;

    (__a *= __b) %= __mod;
  }

  return __a;
};

}  // namespace workspace
#line 15 "Library\\src\\modular\\modint.hpp"

namespace workspace {

namespace _modint_impl {

template <auto _Mod, unsigned _Storage> struct modint {
  static_assert(is_integral_ext<decltype(_Mod)>::value,
                "_Mod must be integral type.");

  using mod_type = std::make_signed_t<typename std::conditional<
      0 < _Mod, std::add_const_t<decltype(_Mod)>, decltype(_Mod)>::type>;

  using value_type = std::decay_t<mod_type>;

  using mul_type = typename multiplicable_uint<value_type>::type;

  // Modulus
  static mod_type mod;

  static unsigned storage;

 private:
  value_type value = 0;

  struct direct_ctor_t {};
  constexpr static direct_ctor_t direct_ctor_tag{};

  // Direct constructor
  template <class _Tp>
  constexpr modint(_Tp __n, direct_ctor_t) noexcept : value(__n) {}

 public:
  constexpr modint() noexcept = default;

  template <class _Tp, typename = std::enable_if_t<is_integral_ext<_Tp>::value>>
  constexpr modint(_Tp __n) noexcept
      : value((__n %= mod) < 0 ? __n += mod : __n) {}

  constexpr modint(bool __n) noexcept : value(__n) {}

  constexpr operator value_type() const noexcept { return value; }

  // unary operators {{
  constexpr modint operator++(int) noexcept {
    modint __t{*this};
    operator++();
    return __t;
  }

  constexpr modint operator--(int) noexcept {
    modint __t{*this};
    operator--();
    return __t;
  }

  constexpr modint &operator++() noexcept {
    if (++value == mod) value = 0;
    return *this;
  }

  constexpr modint &operator--() noexcept {
    if (!value)
      value = mod - 1;
    else
      --value;
    return *this;
  }

  constexpr modint operator+() const noexcept { return *this; }

  constexpr modint operator-() const noexcept {
    return {value ? mod - value : 0, direct_ctor_tag};
  }

  // }} unary operators

  // operator+= {{

  constexpr modint &operator+=(const modint &__x) noexcept {
    if ((value += __x.value) >= mod) value -= mod;
    return *this;
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator+=(
      _Tp const &__x) noexcept {
    if (((value += __x) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator+=

  // operator+ {{

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator+(
      _Tp const &__x) const noexcept {
    return modint{*this} += __x;
  }

  constexpr modint operator+(modint __x) const noexcept { return __x += *this; }

  template <class _Tp>
  constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
  operator+(_Tp const &__x, modint __y) noexcept {
    return __y += __x;
  }

  // }} operator+

  // operator-= {{

  constexpr modint &operator-=(const modint &__x) noexcept {
    if ((value -= __x.value) < 0) value += mod;
    return *this;
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator-=(
      _Tp __x) noexcept {
    if (((value -= __x) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator-=

  // operator- {{

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator-(
      _Tp const &__x) const noexcept {
    return modint{*this} -= __x;
  }

  constexpr modint operator-(const modint &__x) const noexcept {
    return modint{*this} -= __x;
  }

  template <class _Tp>
  constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
  operator-(_Tp __x, const modint &__y) noexcept {
    if (((__x -= __y.value) %= mod) < 0) __x += mod;
    return {__x, direct_ctor_tag};
  }

  // }} operator-

  // operator*= {{

  constexpr modint &operator*=(const modint &__x) noexcept {
    value =
        static_cast<value_type>(value * static_cast<mul_type>(__x.value) % mod);
    return *this;
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator*=(
      _Tp __x) noexcept {
    value = static_cast<value_type>(
        value * mul_type((__x %= mod) < 0 ? __x + mod : __x) % mod);
    return *this;
  }

  // }} operator*=

  // operator* {{

  constexpr modint operator*(const modint &__x) const noexcept {
    return {static_cast<mul_type>(value) * __x.value % mod, direct_ctor_tag};
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator*(
      _Tp __x) const noexcept {
    __x %= mod;
    if (__x < 0) __x += mod;
    return {static_cast<mul_type>(value) * __x % mod, direct_ctor_tag};
  }

  template <class _Tp>
  constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
  operator*(_Tp __x, const modint &__y) noexcept {
    __x %= mod;
    if (__x < 0) __x += mod;
    return {static_cast<mul_type>(__x) * __y.value % mod, direct_ctor_tag};
  }

  // }} operator*

 protected:
  static value_type _mem(value_type __x) {
    static std::vector<value_type> __m{0, 1};
    static value_type __i = (__m.reserve(storage), 1);
    while (__i < __x) {
      ++__i;
      __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
    }
    return __m[__x];
  }

  static value_type _div(mul_type __r, value_type __x) noexcept {
    assert(__x != value_type(0));
    if (!__r) return 0;

    std::make_signed_t<value_type> __v{};
    bool __neg = __x < 0 ? __x = -__x, true : false;

    if (static_cast<decltype(storage)>(__x) < storage)
      __v = _mem(__x);
    else {
      value_type __y{mod}, __u{1}, __t;

      while (__x)
        __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
        __v ^= __u ^= (__v -= __t * __u) ^= __u;

      if (__y < 0) __neg ^= 1;
    }

    if (__neg)
      __v = 0 < __v ? mod - __v : -__v;
    else if (__v < 0)
      __v += mod;

    return __r == mul_type(1) ? static_cast<value_type>(__v)
                              : static_cast<value_type>(__r * __v % mod);
  }

 public:
  // operator/= {{

  constexpr modint &operator/=(const modint &__x) noexcept {
    if (value) value = _div(value, __x.value);
    return *this;
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator/=(
      _Tp __x) noexcept {
    if (value) value = _div(value, __x %= mod);
    return *this;
  }

  // }} operator/=

  // operator/ {{

  constexpr modint operator/(const modint &__x) const noexcept {
    if (!value) return {};
    return {_div(value, __x.value), direct_ctor_tag};
  }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator/(
      _Tp __x) const noexcept {
    if (!value) return {};
    return {_div(value, __x %= mod), direct_ctor_tag};
  }

  template <class _Tp>
  constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
  operator/(_Tp __x, const modint &__y) noexcept {
    if (!__x) return {};
    if ((__x %= mod) < 0) __x += mod;
    return {_div(__x, __y.value), direct_ctor_tag};
  }

  // }} operator/

  constexpr modint inv() const noexcept { return _div(1, value); }

  template <class _Tp>
  constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> pow(
      _Tp __e) const noexcept {
    modint __r{1, direct_ctor_tag};

    for (modint __b{__e < 0 ? __e = -__e, _div(1, value) : value,
                              direct_ctor_tag};
         __e; __e >>= 1, __b *= __b)
      if (__e & 1) __r *= __b;

    return __r;
  }

  template <class _Tp>
  constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint> pow(
      modint __b, _Tp __e) noexcept {
    if (__e < 0) {
      __e = -__e;
      __b.value = _div(1, __b.value);
    }

    modint __r{1, direct_ctor_tag};

    for (; __e; __e >>= 1, __b *= __b)
      if (__e & 1) __r *= __b;

    return __r;
  }

  constexpr modint sqrt() const noexcept {
    return {sqrt_mod(value, mod), direct_ctor_tag};
  }

  friend constexpr modint sqrt(const modint &__x) noexcept {
    return {sqrt_mod(__x.value, mod), direct_ctor_tag};
  }

  template <class _Os>
  friend _Os &operator<<(_Os &__os, const modint &__x) noexcept {
    return __os << __x.value;
  }

  friend std::istream &operator>>(std::istream &__is, modint &__x) noexcept {
    std::string __s;
    __is >> __s;
    bool __neg = false;
    if (__s.front() == '-') {
      __neg = true;
      __s.erase(__s.begin());
    }
    __x = 0;
    for (char __c : __s) __x = __x * 10 + (__c - '0');
    if (__neg) __x = -__x;
    return __is;
  }
};

template <auto _Mod, unsigned _Storage>
typename modint<_Mod, _Storage>::mod_type modint<_Mod, _Storage>::mod =
    _Mod > 0 ? _Mod : 0;

template <auto _Mod, unsigned _Storage>
unsigned modint<_Mod, _Storage>::storage = _Storage;

}  // namespace _modint_impl

template <auto _Mod, unsigned _Storage = 0,
          typename = std::enable_if_t<(_Mod > 0)>>
using modint = _modint_impl::modint<_Mod, _Storage>;

template <unsigned _Id = 0>
using modint_runtime = _modint_impl::modint<-(signed)_Id, 0>;

}  // namespace workspace
#line 4 "other-workspace\\y2.cc"
// #include "src/utils/py-like/enumerate.hpp"
// #include "src/utils/py-like/range.hpp"

namespace workspace {

using mint = modint<998244353>;
using poly = polynomial<mint>;

constexpr auto max_value = 3000;

struct mono {
  poly v{1};
  mono operator+(mono x) const {
    auto t = v;
    t *= x.v;
    t.resize(max_value + 1);
    return {t};
  }
};

using namespace std;
using i64 = int_least64_t;

void main() {
  // start here!

  i64 N;
  int Q;
  cin >> N >> Q;
  vector<tuple<int, int, int>> updates;
  vector<pair<int, int>> queries;

  vector<i64> id;
  for (int i = 0; i < Q; ++i) {
    i64 k;
    int a, b, s, t;
    cin >> k >> a >> b >> s >> t;
    if (auto f = find(begin(id), end(id), k); f != id.end()) {
      k = f - id.begin();
    } else {
      k = id.size();
      id.emplace_back(k);
    }
    updates.emplace_back(k, a, b);
    queries.emplace_back(s, t);
  }

  poly f(max_value + 1);
  {
    mint c = 1;
    for (int i = 0; i <= max_value; ++i) {
      f[i] = c;
      c *= N - id.size() + i;
      c /= i + 1;
    }
  }

  segment_tree<mono> sgt(id.size(), {poly(max_value + 1, 1)});
  for (int i = 0; i < Q; ++i) {
    auto [k, a, b] = updates[i];
    {
      auto &v = sgt[k].v;
      for (int i = a; i <= b; ++i) {
        v[i] = 0;
      }
    }

    auto [s, t] = queries[i];
    auto v = sgt.fold().v * f;

    mint ans;
    for (int i = s; i <= t; ++i) {
      ans += v[i];
    }
    cout << ans << "\n";
  }
}

}  // namespace workspace

int main() { workspace::main(); }
0