結果
問題 | No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率 |
ユーザー | leaf_1415 |
提出日時 | 2021-06-11 22:19:04 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 154 ms / 2,000 ms |
コード長 | 7,405 bytes |
コンパイル時間 | 2,670 ms |
コンパイル使用メモリ | 89,644 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-05-08 18:34:55 |
合計ジャッジ時間 | 4,113 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 28 ms
5,376 KB |
testcase_14 | AC | 19 ms
5,376 KB |
testcase_15 | AC | 9 ms
5,376 KB |
testcase_16 | AC | 14 ms
5,376 KB |
testcase_17 | AC | 14 ms
5,376 KB |
testcase_18 | AC | 12 ms
5,376 KB |
testcase_19 | AC | 5 ms
5,376 KB |
testcase_20 | AC | 85 ms
5,376 KB |
testcase_21 | AC | 9 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 151 ms
5,376 KB |
testcase_24 | AC | 153 ms
5,376 KB |
testcase_25 | AC | 153 ms
5,376 KB |
testcase_26 | AC | 152 ms
5,376 KB |
testcase_27 | AC | 153 ms
5,376 KB |
testcase_28 | AC | 153 ms
5,376 KB |
testcase_29 | AC | 154 ms
5,376 KB |
testcase_30 | AC | 153 ms
5,376 KB |
testcase_31 | AC | 152 ms
5,376 KB |
testcase_32 | AC | 153 ms
5,376 KB |
testcase_33 | AC | 153 ms
5,376 KB |
testcase_34 | AC | 22 ms
5,376 KB |
testcase_35 | AC | 22 ms
5,376 KB |
ソースコード
#include <iostream> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #define rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++) #define per(x, s, t) for(llint (x) = (s); (x) >= (t); (x)--) #define reps(x, s) for(llint (x) = 0; (x) < (llint)(s).size(); (x)++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define ceil(x, y) (((x)+(y)-1) / (y)) #define all(x) (x).begin(),(x).end() #define outl(...) dump_func(__VA_ARGS__) #define inf 1e18 using namespace std; typedef long long llint; typedef long long ll; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const ll dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; //const ll mod = 1000000007; const ll mod = 998244353; struct mint{ ll x = 0; mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){ x += ope.x; if(x >= mod) x -= mod; return *this; } mint& operator-=(const mint &ope){ x += mod - ope.x; if(x >= mod) x -= mod; return *this; } mint& operator*=(const mint &ope){ x *= ope.x, x %= mod; return *this; } mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){ if(n & 1) *this *= mul; mul *= mul; n >>= 1; } return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ ll t; is >> t, ope.x = t; return is; } ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} bool exceed(ll x, ll y, ll m){return x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "YES" << endl; } void no(){ cout << "NO" << endl; } ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;} ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());} template<typename T> ostream& operator << (ostream& os, vector<T>& vec) { for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template<typename T> ostream& operator << (ostream& os, deque<T>& deq) { for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " "); return os; } template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& map_var) { for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if(itr != map_var.end()) os << ","; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, set<T>& set_var) { for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, multiset<T>& set_var) { for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> void outa(T a[], ll s, ll t){ for(ll i = s; i <= t; i++){ cout << a[i]; if(i < t) cout << " ";} cout << endl; } void dump_func() {cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...); } struct Matrix{ typedef mint T; int h, w; vector<T> mat; Matrix(){h = w = 0;} Matrix(int h, int w){ this->h = h, this->w = w; mat.resize(h*w); } T addope(T a, T b){ return a+b; } //加法作用素 static T addIdent(){ return mint(0);} //加法単位元 T mulope(T a, T b){ return a*b; } //乗法作用素 static T mulIdent(){ return mint(1); } //乗法単位元 T& at(int i, int j){ return mat[w*(i-1)+(j-1)];} static Matrix Ident(int size){ Matrix ret(size, size); for(int i = 1; i <= size; i++){ for(int j = 1; j <= size; j++){ if(i == j) ret.at(i, j) = mulIdent(); else ret.at(i, j) = addIdent(); } } return ret; } Matrix operator+(Matrix& ope){ Matrix ret(h, w); for(int i = 1; i <= h; i++){ for(int j = 1; j <= w; j++){ ret.at(i, j) = at(i, j) + ope.at(i, j); } } return ret; } Matrix operator*(Matrix& ope){ Matrix ret(h, ope.w); for(int i = 1; i <= h; i++){ for(int j = 1; j <= ope.w; j++){ ret.at(i, j) = addIdent(); for(int k = 1; k <= w; k++){ ret.at(i, j) = addope(ret.at(i, j), mulope(at(i, k), ope.at(k, j))); } } } return ret; } Matrix pow(llint n){ if(n == 0) return Ident(h); if(n % 2) return pow(n-1) * (*this); else{ Matrix tmp = pow(n/2); return tmp * tmp; } } }; ostream& operator << (ostream& os, Matrix& mat) { for(int i = 1; i <= mat.h; i++){ for(int j = 1; j <= mat.w; j++) os << mat.mat[mat.w*(i-1)+(j-1)] << " "; cout << endl; } return os; } ostream& operator << (ostream& os, const Matrix& mat) { for(int i = 1; i <= mat.h; i++){ for(int j = 1; j <= mat.w; j++) os << mat.mat[mat.w*(i-1)+(j-1)] << " "; cout << endl; } return os; } mint p, q; ll s, t, K; int main(void) { ios::sync_with_stdio(0); cin.tie(0); ll a, b; cin >> a >> b >> s; p = mint(a) / mint(b); cin >> a >> b >> t; q = mint(a) / mint(b); cin >> K; Matrix mat(s+t+1, s+t+1); mat.at(1, 1) = mat.at(s+t+1, s+t+1) = mint(1); rep(i, -t+1, s-1){ rep(j, 0, s+t){ if(i+j == s){ mat.at(s+t+1, i+t+1) += modpow(p, j); break; } mint pro = modpow(p, j) * (mint(1)-p); rep(k, 0, s+t){ if(i+j-k == -t){ mat.at(1, i+t+1) += pro * modpow(q, k); break; } mat.at(i+j-k+t+1, i+t+1) += pro * modpow(q, k) * (mint(1)-q); } } } Matrix pmat = mat.pow(K); outl(pmat.at(s+t+1, t+1)); outl(pmat.at(1, t+1)); return 0; }