結果

問題 No.1545 [Cherry 2nd Tune N] Anthem
ユーザー midri1784
提出日時 2021-06-11 22:19:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 318 ms / 3,000 ms
コード長 3,397 bytes
コンパイル時間 3,548 ms
コンパイル使用メモリ 209,896 KB
最終ジャッジ日時 2025-01-22 06:08:14
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 67
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘void RI(i64&)’:
main.cpp:15:30: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   15 | inline void RI(i64 &i) {scanf("%lld", &(i));}
      |                         ~~~~~^~~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long i64;
typedef unsigned long long ui64;
typedef vector<i64> vi;
typedef vector<vi> vvi;
typedef pair<i64, i64> pi;
#define pb push_back
#define sz(a) i64((a).size())
#define all(c) (c).begin(), (c).end()
#define REP(s, e, i) for(i=(s); i < (e); ++i)
inline void RI(i64 &i) {scanf("%lld", &(i));}
inline void RVI(vi &v) { for(i64 i=0;i<sz(v);++i) { RI(v[i]); } }
inline void RVVI(vvi &vv) { for(i64 i=0;i<sz(vv);++i) { RVI(vv[i]); } }
inline void WI(const i64 &i) {printf("%lld\n", i);}
inline void WVI(const vi &v, char sep=' ') { for(i64 i=0;i<sz(v);++i) { if(i != 0){ printf("%c", sep); } printf("%lld", v[i]);} printf("\n"); }
inline void WS(const string &s) { printf("%s\n", s.c_str()); }
inline void WB(bool b, const string &yes, const string &no) { if(b){ WS(yes);} else { WS(no);} }
inline void YESNO(bool b) { WB(b, "YES", "NO"); }
inline void YesNo(bool b) { WB(b, "Yes", "No"); }
#define BUF_LENGTH 1000000
inline void RS(string &s) {static char buf[BUF_LENGTH]; scanf("%s", buf); s = buf;}
template<typename T> inline bool IN(T &S, const typename T::key_type &key) {
return S.find(key) != S.end();
}
template<typename T> inline bool ON(const T &b, i64 idx) {
return ((T(1) << idx) & b) != 0;
}
int main(int argc, char *argv[]) {
i64 i, j, k;
i64 N, S, T, K; cin >> N >> S >> T >> K;
--S; --T;
vi X(N); RVI(X);
vector<vector<pi>> edges(N);
vector<vector<pi>> r_edges(N);
i64 M; cin >> M;
REP(0, M, i) {
i64 a, b, y; RI(a); RI(b); RI(y); --a; --b;
edges[a].pb({b, y});
r_edges[b].pb({a, y});
}
auto update = [](const pi &a, const pi &b) {
if(b.first == -1) {
return a;
}
if(a.first == -1) {
return b;
}
if(b.first < a.first) {
return b;
}
return a;
};
// BFS part
vector<vector<pi>> TS(K, vector<pi>(N, {-1, -1}));
TS[0][S] = {X[S], -1};
REP(0, K-1, k) {
REP(0, N, i) {
if(TS[k][i].first >= 0) {
for(auto &e: edges[i]) {
i64 n = e.first, w = e.second;
TS[k+1][n] = update(TS[k+1][n], {TS[k][i].first + w + X[n], i});
}
}
}
}
// dijkstra part
vector<pi> D(N, pi(-1, -1));
using ppi = pair<pi, i64>;
priority_queue<ppi, vector<ppi>, greater<ppi>> pq;
D[T] = {0, -1};
pq.push({D[T], T});
while(!pq.empty()) {
auto c = pq.top(); pq.pop();
i64 cur = c.second;
pi d = c.first;
if(d != D[cur]) {
continue;
}
for(auto &e: r_edges[cur]) {
i64 n = e.first, w = e.second;
i64 dn = d.first + X[cur] + w;
if(D[n].first == -1 || dn < D[n].first) {
D[n] = {dn, cur};
pq.push({{dn, cur}, n});
}
}
}
i64 idx = -1, m = -1;
REP(0, N, i) {
if(TS[K-1][i].first != -1 && D[i].first != -1) {
i64 candidate = TS[K-1][i].first + D[i].first;
if(m == -1 || candidate < m) {
m = candidate;
idx = i;
}
}
}
if(idx == -1) {
WS("Impossible");
}
else {
vi ans;
k = K-1;
i64 prev = idx;
while(k >= 0) {
ans.push_back(prev+1);
prev = TS[k][prev].second;
--k;
}
reverse(all(ans));
i64 next = D[idx].second;
while(next != -1) {
ans.push_back(next+1);
next = D[next].second;
}
//cerr << idx+1 << endl;
WS("Possible");
WI(m);
WI(sz(ans));
WVI(ans);
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0