結果

問題 No.1549 [Cherry 2nd Tune] BANning Tuple
ユーザー LayCurseLayCurse
提出日時 2021-06-11 22:23:33
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,173 ms / 4,000 ms
コード長 18,068 bytes
コンパイル時間 3,696 ms
コンパイル使用メモリ 246,836 KB
実行使用メモリ 6,144 KB
最終ジャッジ日時 2024-12-15 00:31:49
合計ジャッジ時間 30,366 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,888 KB
testcase_01 AC 92 ms
5,888 KB
testcase_02 AC 1,383 ms
5,888 KB
testcase_03 AC 2,051 ms
5,760 KB
testcase_04 AC 2,135 ms
6,016 KB
testcase_05 AC 2,058 ms
5,888 KB
testcase_06 AC 2,173 ms
6,016 KB
testcase_07 AC 1,830 ms
6,144 KB
testcase_08 AC 1,585 ms
6,016 KB
testcase_09 AC 1,648 ms
6,144 KB
testcase_10 AC 1,493 ms
6,016 KB
testcase_11 AC 870 ms
6,016 KB
testcase_12 AC 1,531 ms
6,144 KB
testcase_13 AC 1,634 ms
6,016 KB
testcase_14 AC 1,631 ms
6,016 KB
testcase_15 AC 1,532 ms
5,888 KB
testcase_16 AC 1,565 ms
6,016 KB
testcase_17 AC 52 ms
6,016 KB
testcase_18 AC 52 ms
5,888 KB
testcase_19 AC 117 ms
5,888 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
#define MD_PRIMITIVE_ROOT (3U)
#define PI 3.14159265358979323846
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class S, class T> inline S chmax(S &a, T b){
  if(a<b){
    a=b;
  }
  return a;
}
struct fft_pnt{
  double x;
  double y;
  fft_pnt(void){
  }
  fft_pnt(double a, double b){
    x = a;
    y = b;
  }
  void set(double a, double b){
    x = a;
    y = b;
  }
  fft_pnt& operator+=(fft_pnt a){
    x+=a.x;
    y+=a.y;
    return *this;
  }
  fft_pnt& operator-=(fft_pnt a){
    x-=a.x;
    y-=a.y;
    return *this;
  }
  fft_pnt& operator*=(fft_pnt a){
    fft_pnt p = *this;
    x = p.x*a.x-p.y*a.y;
    y = p.x*a.y+p.y*a.x;
    return *this;
  }
  fft_pnt operator+(fft_pnt a){
    return fft_pnt(*this) += a;
  }
  fft_pnt operator-(fft_pnt a){
    return fft_pnt(*this) -= a;
  }
  fft_pnt operator*(fft_pnt a){
    return fft_pnt(*this) *= a;
  }
}
;
void fft(int n, fft_pnt x[], void *mem = wmem){
  int i;
  int j;
  int n1;
  int n2;
  int n3;
  int step = 1;
  double theta = 2*PI / n;
  double tmp;
  fft_pnt w1;
  fft_pnt w2;
  fft_pnt w3;
  fft_pnt a;
  fft_pnt b;
  fft_pnt c;
  fft_pnt d;
  fft_pnt aa;
  fft_pnt bb;
  fft_pnt cc;
  fft_pnt dd;
  fft_pnt*y = (fft_pnt*)mem;
  while(n > 2){
    n1 = n / 4;
    n2 = n1 + n1;
    n3 = n1 + n2;
    for(i=(0);i<(n1);i++){
      w1 = fft_pnt(cos(i*theta),-sin(i*theta));
      w2 = w1*w1;
      w3 = w1*w2;
      for(j=(0);j<(step);j++){
        a = x[j+step*i];
        b = x[j+step*(i+n1)];
        c = x[j+step*(i+n2)];
        d = x[j+step*(i+n3)];
        aa = a + c;
        bb = a - c;
        cc = b + d;
        dd = b - d;
        tmp = dd.y;
        dd.y = dd.x;
        dd.x = -tmp;
        y[j+step*(4*i  )] = aa + cc;
        y[j+step*(4*i+1)] = w1*(bb - dd);
        y[j+step*(4*i+2)] = w2*(aa - cc);
        y[j+step*(4*i+3)] = w3*(bb + dd);
      }
    }
    n /= 4;
    step *= 4;
    theta *= 4;
    swap(x,y);
  }
  if(n==2){
    for(i=(0);i<(step);i++){
      y[i] = x[i] + x[i+step];
      y[i+step] = x[i] - x[i+step];
    }
    n /= 2;
    step *= 2;
    theta *= 2;
    swap(x,y);
  }
  for(i=(0);i<(step);i++){
    y[i] = x[i];
  }
}
void fftinv(int n, fft_pnt x[], void *mem = wmem){
  int i;
  int j;
  int n1;
  int n2;
  int n3;
  int step = 1;
  double theta = 2*PI / n;
  double tmp;
  fft_pnt w1;
  fft_pnt w2;
  fft_pnt w3;
  fft_pnt a;
  fft_pnt b;
  fft_pnt c;
  fft_pnt d;
  fft_pnt aa;
  fft_pnt bb;
  fft_pnt cc;
  fft_pnt dd;
  fft_pnt*y = (fft_pnt*)mem;
  while(n > 2){
    n1 = n / 4;
    n2 = n1 + n1;
    n3 = n1 + n2;
    for(i=(0);i<(n1);i++){
      w1 = fft_pnt(cos(i*theta),sin(i*theta));
      w2 = w1*w1;
      w3 = w1*w2;
      for(j=(0);j<(step);j++){
        a = x[j+step*i];
        b = x[j+step*(i+n1)];
        c = x[j+step*(i+n2)];
        d = x[j+step*(i+n3)];
        aa = a + c;
        bb = a - c;
        cc = b + d;
        dd = b - d;
        tmp = dd.y;
        dd.y = dd.x;
        dd.x = -tmp;
        y[j+step*(4*i  )] = aa + cc;
        y[j+step*(4*i+1)] = w1*(bb + dd);
        y[j+step*(4*i+2)] = w2*(aa - cc);
        y[j+step*(4*i+3)] = w3*(bb - dd);
      }
    }
    n /= 4;
    step *= 4;
    theta *= 4;
    swap(x,y);
  }
  if(n==2){
    for(i=(0);i<(step);i++){
      y[i] = x[i] + x[i+step];
      y[i+step] = x[i] - x[i+step];
    }
    n /= 2;
    step *= 2;
    theta *= 2;
    swap(x,y);
  }
  for(i=(0);i<(step);i++){
    y[i] = x[i];
  }
}
void convolution_L(double A[], int As, double B[], int Bs, double res[], int Rs, void *mem = wmem){
  int i;
  int n;
  int n2;
  double mul;
  fft_pnt*a;
  fft_pnt*b;
  n =max_L(As+Bs, Rs);
  for(n2=1;n2<n;n2*=2){
    ;
  }
  walloc1d(&a, n2, &mem);
  walloc1d(&b, n2, &mem);
  for(i=(0);i<(As);i++){
    a[i].set(A[i], 0);
  }
  int n23oAcQn = n2;
  for(i=(As);i<(n23oAcQn);i++){
    a[i].set(0,0);
  }
  for(i=(0);i<(Bs);i++){
    b[i].set(B[i], 0);
  }
  int YLphHk7H = n2;
  for(i=(Bs);i<(YLphHk7H);i++){
    b[i].set(0,0);
  }
  fft(n2, a, mem);
  fft(n2, b, mem);
  for(i=(0);i<(n2);i++){
    a[i] *= b[i];
  }
  fftinv(n2, a, mem);
  mul = 1.0 / n2;
  for(i=(0);i<(Rs);i++){
    res[i] = a[i].x * mul;
  }
}
void convolution_L(double A[], int As, double res[], int Rs, void *mem = wmem){
  int i;
  int n;
  int n2;
  double mul;
  fft_pnt*a;
  n =max_L(As+As, Rs);
  for(n2=1;n2<n;n2*=2){
    ;
  }
  walloc1d(&a, n2, &mem);
  for(i=(0);i<(As);i++){
    a[i].set(A[i], 0);
  }
  int HK5nwQQr = n2;
  for(i=(As);i<(HK5nwQQr);i++){
    a[i].set(0,0);
  }
  fft(n2, a, mem);
  for(i=(0);i<(n2);i++){
    a[i] *= a[i];
  }
  fftinv(n2, a, mem);
  mul = 1.0 / n2;
  for(i=(0);i<(Rs);i++){
    res[i] = a[i].x * mul;
  }
}
void fft(int n, Modint x[], Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
  int i;
  int j;
  int n1;
  int n2;
  int n3;
  int step = 1;
  Modint w1;
  Modint w2;
  Modint w3;
  Modint a;
  Modint b;
  Modint c;
  Modint d;
  Modint aa;
  Modint bb;
  Modint cc;
  Modint dd;
  Modint tmp;
  Modint*y;
  walloc1d(&y, n, &mem);
  tmp = root.pw((MD-1)/4*3);
  root = root.pw((MD-1)/n);
  while(n > 2){
    n1 = n / 4;
    n2 = n1 + n1;
    n3 = n1 + n2;
    w1.val = 1;
    for(i=(0);i<(n1);i++){
      w2 = w1*w1;
      w3 = w1*w2;
      for(j=(0);j<(step);j++){
        a = x[j+step*i];
        b = x[j+step*(i+n1)];
        c = x[j+step*(i+n2)];
        d = x[j+step*(i+n3)];
        aa = a + c;
        bb = a - c;
        cc = b + d;
        dd = (b - d) * tmp;
        y[j+step*(4*i  )] = aa + cc;
        y[j+step*(4*i+1)] = w1*(bb - dd);
        y[j+step*(4*i+2)] = w2*(aa - cc);
        y[j+step*(4*i+3)] = w3*(bb + dd);
      }
      w1 *= root;
    }
    n /= 4;
    step *= 4;
    root *= root;
    root *= root;
    swap(x,y);
  }
  if(n==2){
    for(i=(0);i<(step);i++){
      y[i] = x[i] + x[i+step];
      y[i+step] = x[i] - x[i+step];
    }
    n /= 2;
    step *= 2;
    root *= root;
    swap(x,y);
  }
  for(i=(0);i<(step);i++){
    y[i] = x[i];
  }
}
void fftinv(int n, Modint x[], Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
  int i;
  int j;
  int n1;
  int n2;
  int n3;
  int step = 1;
  Modint w1;
  Modint w2;
  Modint w3;
  Modint a;
  Modint b;
  Modint c;
  Modint d;
  Modint aa;
  Modint bb;
  Modint cc;
  Modint dd;
  Modint tmp;
  Modint*y;
  walloc1d(&y, n, &mem);
  root = root.inverse();
  tmp = root.pw((MD-1)/4);
  root = root.pw((MD-1)/n);
  while(n > 2){
    n1 = n / 4;
    n2 = n1 + n1;
    n3 = n1 + n2;
    w1.val = 1;
    for(i=(0);i<(n1);i++){
      w2 = w1*w1;
      w3 = w1*w2;
      for(j=(0);j<(step);j++){
        a = x[j+step*i];
        b = x[j+step*(i+n1)];
        c = x[j+step*(i+n2)];
        d = x[j+step*(i+n3)];
        aa = a + c;
        bb = a - c;
        cc = b + d;
        dd = (b - d) * tmp;
        y[j+step*(4*i  )] = aa + cc;
        y[j+step*(4*i+1)] = w1*(bb + dd);
        y[j+step*(4*i+2)] = w2*(aa - cc);
        y[j+step*(4*i+3)] = w3*(bb - dd);
      }
      w1 *= root;
    }
    n /= 4;
    step *= 4;
    root *= root;
    root *= root;
    swap(x,y);
  }
  if(n==2){
    for(i=(0);i<(step);i++){
      y[i] = x[i] + x[i+step];
      y[i+step] = x[i] - x[i+step];
    }
    n /= 2;
    step *= 2;
    root *= root;
    swap(x,y);
  }
  for(i=(0);i<(step);i++){
    y[i] = x[i];
  }
}
void convolution_L(Modint A[], int As, Modint B[], int Bs, Modint res[], int Rs,  Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
  int i;
  int n;
  int n2;
  Modint*a;
  Modint*b;
  Modint r;
  n =max_L(As+Bs, Rs);
  for(n2=1;n2<n;n2*=2){
    ;
  }
  walloc1d(&a, n2, &mem);
  walloc1d(&b, n2, &mem);
  for(i=(0);i<(As);i++){
    a[i] = A[i];
  }
  int zFx0mzMa = n2;
  for(i=(As);i<(zFx0mzMa);i++){
    a[i].val = 0;
  }
  for(i=(0);i<(Bs);i++){
    b[i] = B[i];
  }
  int HzpWKs66 = n2;
  for(i=(Bs);i<(HzpWKs66);i++){
    b[i].val = 0;
  }
  fft(n2, a, root, mem);
  fft(n2, b, root, mem);
  for(i=(0);i<(n2);i++){
    a[i] *= b[i];
  }
  fftinv(n2, a, root, mem);
  r = Modint(n2).inverse();
  for(i=(0);i<(Rs);i++){
    res[i] = a[i] * r;
  }
}
void convolution_L(Modint A[], int As, Modint res[], int Rs, Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
  int i;
  int n;
  int n2;
  Modint*a;
  Modint r;
  n =max_L(2*As, Rs);
  for(n2=1;n2<n;n2*=2){
    ;
  }
  walloc1d(&a, n2, &mem);
  for(i=(0);i<(As);i++){
    a[i] = A[i];
  }
  int Hm7urWqA = n2;
  for(i=(As);i<(Hm7urWqA);i++){
    a[i].val = 0;
  }
  fft(n2, a, root, mem);
  for(i=(0);i<(n2);i++){
    a[i] *= a[i];
  }
  fftinv(n2, a, root, mem);
  r = Modint(n2).inverse();
  for(i=(0);i<(Rs);i++){
    res[i] = a[i]*r;
  }
}
long long N;
long long K[100];
int Q;
int A[100];
int B[100];
int S[100];
int T[100];
Modint ok[101][3001];
Modint dp[101][3001];
map<long long,int> ind;
Modint H(long long a, int b){
  int i;
  Modint x;
  Modint y;
  if(a == b  &&  b == 0){
    return 1;
  }
  if(a <= 0 || b < 0){
    return 0;
  }
  x = y = 1;
  for(i=(0);i<(b);i++){
    x *= a+i;
    y *= i+1;
  }
  return x / y;
}
int main(){
  int i, q;
  wmem = memarr;
  int mx = -1;
  int sz = 0;
  Modint res;
  rd(N);
  rd(Q);
  {
    int Q5VJL1cS;
    for(Q5VJL1cS=(0);Q5VJL1cS<(Q);Q5VJL1cS++){
      rd(K[Q5VJL1cS]);
      rd(A[Q5VJL1cS]);
      rd(B[Q5VJL1cS]);
      rd(S[Q5VJL1cS]);
      rd(T[Q5VJL1cS]);
    }
  }
  for(i=(0);i<(Q);i++){
    int j;
    for(j=(0);j<(3001);j++){
      ok[i][j] = 1;
    }
  }
  for(i=(0);i<(Q);i++){
    if(ind.count(K[i])){
      K[i] = ind[K[i]];
      continue;
    }
    K[i] = ind[K[i]] = sz++;
  }
  for(q=(0);q<(Q);q++){
    chmax(mx, K[q]+1);
    for(i=(A[q]);i<(B[q]+1);i++){
      ok[K[q]][i] = 0;
    }
    for(i=(K[q]);i<(mx);i++){
      if(i==0){
        int j;
        for(j=(0);j<(3001);j++){
          dp[i][j] = ok[0][j];
        }
      }
      else{
        convolution_L(dp[i-1], 3001, ok[i], 3001, dp[i], 3001);
      }
    }
    res = 0;
    for(i=(0);i<(T[q]+1);i++){
      if(dp[mx-1][i]){
        res += H(N-mx+1, T[q]-i) * dp[mx-1][i];
        res -= H(N-mx+1, S[q]-i-1) * dp[mx-1][i];
      }
    }
    wt_L(res);
    wt_L('\n');
  }
  return 0;
}
// cLay version 20210611-1 [beta]

// --- original code ---
// #define MD 998244353
// ll N, K[100];
// int Q, A[], B[], S[], T[];
// Modint ok[101][3001], dp[101][3001];
// map<ll,int> ind;
// 
// Modint H(ll a, int b){
//   int i;
//   Modint x, y;
//   if(a == b == 0) return 1;
//   if(a <= 0 || b < 0) return 0;
//   x = y = 1;
//   rep(i,b){
//     x *= a+i;
//     y *= i+1;
//   }
//   return x / y;
// }
// 
// {
//   int mx = -1, sz = 0;
//   Modint res;
//   rd(N,Q,(K,A,B,S,T)(Q));
//   rep(i,Q) rep(j,3001) ok[i][j] = 1;
// 
//   rep(i,Q){
//     if(ind.count(K[i])) K[i] = ind[K[i]], continue;
//     K[i] = ind[K[i]] = sz++;
//   }
// 
//   rep(q,Q){
//     mx >?= K[q]+1;
//     rep(i,A[q],B[q]+1) ok[K[q]][i] = 0;
//     rep(i,K[q],mx){
//       if(i==0){
//         rep(j,3001) dp[i][j] = ok[0][j];
//       } else {
//         convolution(dp[i-1], 3001, ok[i], 3001, dp[i], 3001);
//       }
//     }
//     res = 0;
//     rep(i,T[q]+1) if(dp[mx-1][i]){
//       res += H(N-mx+1, T[q]-i) * dp[mx-1][i];
//       res -= H(N-mx+1, S[q]-i-1) * dp[mx-1][i];
//     }
//     wt(res);
//   }
// }
0