結果
問題 | No.1546 [Cherry 2nd Tune D] 思ったよりも易しくない |
ユーザー | FF256grhy |
提出日時 | 2021-06-11 22:36:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,983 bytes |
コンパイル時間 | 3,488 ms |
コンパイル使用メモリ | 237,092 KB |
実行使用メモリ | 12,116 KB |
最終ジャッジ日時 | 2024-05-08 18:40:43 |
合計ジャッジ時間 | 9,006 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,624 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 5 ms
5,376 KB |
testcase_04 | AC | 5 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 4 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 6 ms
5,376 KB |
testcase_13 | TLE | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incIX(i, l, r) for(LL i = (l) ; i < (r); i++) #define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decXI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incIX(i, 0, n) #define dec(i, n) decIX(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); }; auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); }; auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); }; auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); }; auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(c) c.begin(), c.end() #define RALL(c) c.rbegin(), c.rend() #define RV(c) reverse(ALL(c)) #define SC static_cast #define SI(c) SC<int>(c.size()) #define SL(c) SC<LL >(c.size()) #define RF(e, c) for(auto & e: c) #define SF(c, ...) for(auto & [__VA_ARGS__]: c) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) auto * IS = & cin; auto * OS = & cout; array<string, 3> SEQ = { "", " ", "" }; // input template<typename T> T in() { T a; (* IS) >> a; return a; } // input: tuple template<int I, typename U> void tin_(istream & is, U & t) { if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); } } template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; } template<typename ... T> auto tin() { return in<tuple<T ...>>(); } // input: array template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; } template<typename T, size_t N> auto ain() { return in<array<T, N>>(); } // input: multi-dimensional vector template<typename T> T vin() { T v; (* IS) >> v; return v; } template<typename T, typename N, typename ... M> auto vin(N n, M ... m) { vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v; } // input: multi-column (tuple<vector>) template<typename U, int I> void colin_([[maybe_unused]] U & t) { } template<typename U, int I, typename A, typename ... B> void colin_(U & t) { get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t); } template<typename ... T> auto colin(int n) { tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t; } // output void out_([[maybe_unused]] string s) { } template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; } template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; // output: multi-dimensional vector template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) { os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]); } template<typename T> void vout_(T && v) { (* OS) << v; } template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) { inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; } template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; } // ---- ---- template<LL M> class ModInt { private: LL v; pair<LL, LL> ext_gcd(LL a, LL b) { if(b == 0) { assert(a == 1); return { 1, 0 }; } auto p = ext_gcd(b, a % b); return { p.SE, p.FI - (a / b) * p.SE }; } public: ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } } LL val() { return v; } static LL mod() { return M; } ModInt inv() { return ext_gcd(M, v).SE; } ModInt exp(LL b) { ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; } while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; } return p; } friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); } friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); } friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); } friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); } friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); } friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); } friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); } friend ModInt operator- (ModInt a ) { return ModInt(-a.v); } friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); } friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); } friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); } friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); } friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); } friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); } friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); } friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); } friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); } friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); } friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; } friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); } }; // ---- template<typename C, int N> class Poly { private: using D = array<int, N>; using P = map<D, C>; P p; static D plus(D a, D b) { D d = { }; inc(i, N) { d[i] = a[i] + b[i]; } return d; } Poly sum_of_power(int k, int i) { // sum x_i in [0, x_i] x_i ^ k int L = k + 2; vector<C> c(L); inc(j, L) { c[j] = C(j) ^ k; } inc(j, L - 1) { c[j + 1] += c[j]; } Poly v; inc(a, L) { Poly w = c[a]; inc(b, L) { if(a == b) { continue; } w *= (x_(i) - C(b)) / C(a - b); } v += w; } return v; } public: Poly(P pp = { }) { p = pp; } Poly(C c) { p = { { { }, c } }; } Poly(LL c) { p = { { { }, c } }; } static Poly x_(int i) { D d = { }; d[i] = 1; return Poly({ { d, 1 } }); } C substitute(array<C, N> x) { C v = 0; RF(t, p) { C w = t.SE; inc(i, N) { w *= x[i] ^ t.FI[i]; } v += w; } return v; } Poly sum() { Poly v; RF(t, p) { Poly w = t.SE; inc(i, N) { w *= sum_of_power(t.FI[i], i); } v += w; } return v; } friend Poly operator+(Poly a, Poly b) { RF(t, b.p) { a.p[t.FI] += t.SE; } return a; } friend Poly operator-(Poly a, Poly b) { RF(t, b.p) { a.p[t.FI] -= t.SE; } return a; } friend Poly operator/(Poly a, C b) { RF(t, a.p) { t.SE /= b; } return a; } friend Poly operator*(Poly a, Poly b) { P pp; RF(ta, a.p) { RF(tb, b.p) { pp[plus(ta.FI, tb.FI)] += ta.SE * tb.SE; } } return Poly(pp); } friend Poly & operator+=(Poly & a, Poly b) { return (a = a + b); } friend Poly & operator-=(Poly & a, Poly b) { return (a = a - b); } friend Poly & operator/=(Poly & a, C b) { return (a = a / b); } friend Poly & operator*=(Poly & a, Poly b) { return (a = a * b); } friend ostream & operator<<(ostream & os, Poly b) { RF(t, b.p) { if(t.SE == 0) { continue; } os << t.SE; inc(i, N) { if(t.FI[i] == 0) { continue; } os << " " << SC<char>('x' + i); if(t.FI[i] == 1) { continue; } os << "^" << t.FI[i]; } os << endl; } return os; } }; // ---- using MI = ModInt<998244353>; int main() { auto n = in<int>(); auto [t, v] = colin<MI, MI>(n); vector<MI> L(n), R(n); inc(i, n - 1) { L[i + 1] = L[i] + t[i]; } dec(i, n - 1) { R[i] = R[i + 1] + t[i + 1]; } auto x = Poly<MI, 1>::x_(0); MI ans = 0; inc(i, n) { auto p = v[i] * (R[i] + t[i] - x) * (L[i] + x + 1) * (L[i] + x + 2) / 2; ans += p.sum().substitute({ t[i] - 1 }); } out(ans); }