結果
問題 | No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率 |
ユーザー | convexineq |
提出日時 | 2021-06-11 23:05:50 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,410 ms / 2,000 ms |
コード長 | 1,184 bytes |
コンパイル時間 | 180 ms |
コンパイル使用メモリ | 82,228 KB |
実行使用メモリ | 88,644 KB |
最終ジャッジ日時 | 2024-05-08 19:20:26 |
合計ジャッジ時間 | 19,624 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 39 ms
53,728 KB |
testcase_01 | AC | 46 ms
61,612 KB |
testcase_02 | AC | 103 ms
75,980 KB |
testcase_03 | AC | 48 ms
62,836 KB |
testcase_04 | AC | 50 ms
62,236 KB |
testcase_05 | AC | 47 ms
61,388 KB |
testcase_06 | AC | 46 ms
61,684 KB |
testcase_07 | AC | 47 ms
62,348 KB |
testcase_08 | AC | 47 ms
62,932 KB |
testcase_09 | AC | 46 ms
62,468 KB |
testcase_10 | AC | 48 ms
62,956 KB |
testcase_11 | AC | 47 ms
62,560 KB |
testcase_12 | AC | 46 ms
61,484 KB |
testcase_13 | AC | 304 ms
78,840 KB |
testcase_14 | AC | 215 ms
77,104 KB |
testcase_15 | AC | 122 ms
75,780 KB |
testcase_16 | AC | 162 ms
76,248 KB |
testcase_17 | AC | 158 ms
76,060 KB |
testcase_18 | AC | 157 ms
76,120 KB |
testcase_19 | AC | 89 ms
75,728 KB |
testcase_20 | AC | 810 ms
83,836 KB |
testcase_21 | AC | 121 ms
75,896 KB |
testcase_22 | AC | 50 ms
62,956 KB |
testcase_23 | AC | 1,377 ms
88,412 KB |
testcase_24 | AC | 1,377 ms
88,344 KB |
testcase_25 | AC | 1,384 ms
88,216 KB |
testcase_26 | AC | 1,410 ms
88,428 KB |
testcase_27 | AC | 1,374 ms
88,528 KB |
testcase_28 | AC | 1,361 ms
88,560 KB |
testcase_29 | AC | 1,364 ms
88,296 KB |
testcase_30 | AC | 1,373 ms
88,320 KB |
testcase_31 | AC | 1,369 ms
88,552 KB |
testcase_32 | AC | 1,380 ms
88,644 KB |
testcase_33 | AC | 1,366 ms
88,200 KB |
testcase_34 | AC | 115 ms
74,676 KB |
testcase_35 | AC | 121 ms
74,168 KB |
ソースコード
def matmul(A,B): # A,B: 行列 res = [[0]*len(B[0]) for _ in [None]*len(A)] for i, resi in enumerate(res): for k, aik in enumerate(A[i]): for j,bkj in enumerate(B[k]): resi[j] += aik*bkj resi[j] %= MOD return res def matpow(A,p): #A^p mod M if p%2: return matmul(A, matpow(A,p-1)) elif p > 0: b = matpow(A,p//2) return matmul(b,b) else: return [[int(i==j) for j in range(len(A))] for i in range(len(A))] MOD = 998244353 m,n,s = map(int,input().split()) p = m*pow(n,MOD-2,MOD)%MOD m,n,t = map(int,input().split()) q = m*pow(n,MOD-2,MOD)%MOD """ [-t,...0,...,s] offset = -t """ N = s+t+1 N2 = 2*N A = [[0]*N2 for _ in range(N2)] A[0][N] = 1 for i in range(1,N): A[i][i+N] = v = 1-p for j in range(i+1,N): v = v*p%MOD A[i][j+N] = v A[i][N2-1] = pow(p,N-i-1,MOD) B = [[0]*N2 for _ in range(N2)] B[N2-1][N-1] = 1 for i in range(N-1): B[i+N][i] = v = 1-q for j in range(i)[::-1]: v = v*q%MOD B[i+N][j] = v B[i+N][0] = pow(q,i,MOD) C = matmul(A,B) C = matpow(C,int(input())) v = C[t] print(v[N-1]%MOD) print(v[0]%MOD)