結果

問題 No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率
ユーザー theory_and_metheory_and_me
提出日時 2021-06-11 23:20:13
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 165 ms / 2,000 ms
コード長 7,947 bytes
コンパイル時間 2,421 ms
コンパイル使用メモリ 213,044 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-15 02:36:22
合計ジャッジ時間 5,580 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 7 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 3 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 30 ms
6,816 KB
testcase_14 AC 20 ms
6,816 KB
testcase_15 AC 9 ms
6,820 KB
testcase_16 AC 14 ms
6,820 KB
testcase_17 AC 14 ms
6,816 KB
testcase_18 AC 13 ms
6,816 KB
testcase_19 AC 5 ms
6,820 KB
testcase_20 AC 94 ms
6,820 KB
testcase_21 AC 10 ms
6,820 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 164 ms
6,816 KB
testcase_24 AC 164 ms
6,820 KB
testcase_25 AC 164 ms
6,816 KB
testcase_26 AC 164 ms
6,816 KB
testcase_27 AC 164 ms
6,816 KB
testcase_28 AC 165 ms
6,816 KB
testcase_29 AC 165 ms
6,816 KB
testcase_30 AC 164 ms
6,816 KB
testcase_31 AC 164 ms
6,820 KB
testcase_32 AC 164 ms
6,820 KB
testcase_33 AC 164 ms
6,816 KB
testcase_34 AC 14 ms
6,820 KB
testcase_35 AC 14 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define REP(i,n) for(ll i=0;i<(ll)n;i++)
#define dump(x)  cerr << "Line " << __LINE__ << ": " <<  #x << " = " << (x) << "\n";
#define spa << " " <<
#define fi first
#define se second
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()

using ld = long double;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;

template<typename T> using V = vector<T>;
template<typename T> using P = pair<T, T>;
template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;}
template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;}
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;

template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }
void fail() { cout << -1 << '\n'; exit(0); }
inline int popcount(const int x) { return __builtin_popcount(x); }
inline int popcount(const ll x) { return __builtin_popcountll(x); }
template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}};
template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];
for(ll i=1;i<n;i++)cerr spa v[i];
cerr<<"\n";};

const ll INF = (1ll<<62);
// const ld EPS   = 1e-10;
// const ld PI    = acos(-1.0);
// const ll mod = (int)1e9 + 7;
const ll mod = 998244353;

template <std::uint_fast64_t Modulus> class modint {
  // long long から modint を作るときは必ず正の数にしてからコンストラクタに入れること! 
  // そうしないとバグります
  using u64 = std::uint_fast64_t;

public:
  u64 a;

  constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
  constexpr u64 &value() noexcept { return a; }
  constexpr const u64 &value() const noexcept { return a; }
  constexpr modint operator+(const modint rhs) const noexcept {
    return modint(*this) += rhs;
  }
  constexpr modint operator-(const modint rhs) const noexcept {
    return modint(*this) -= rhs;
  }
  constexpr modint operator*(const modint rhs) const noexcept {
    return modint(*this) *= rhs;
  }
  constexpr modint operator/(const modint rhs) const noexcept {
    return modint(*this) /= rhs;
  }
  constexpr modint &operator+=(const modint rhs) noexcept {
    a += rhs.a;
    if (a >= Modulus) {
      a -= Modulus;
    }
    return *this;
  }
  constexpr modint &operator-=(const modint rhs) noexcept {
    if (a < rhs.a) {
      a += Modulus;
    }
    a -= rhs.a;
    return *this;
  }
  constexpr modint &operator*=(const modint rhs) noexcept {
    a = a * rhs.a % Modulus;
    return *this;
  }
  constexpr modint &operator/=(modint rhs) noexcept {
    u64 exp = Modulus - 2;
    while (exp) {
      if (exp % 2) {
        *this *= rhs;
      }
      rhs *= rhs;
      exp /= 2;
    }
    return *this;
  }
};
using mint = modint<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;

ostream& operator << (ostream& os, const mint v){
os << v.value(); return os;
}

template <class T, class U> constexpr T power(T x, U exp) {
  T ret = static_cast<T>(1);
  while (exp) {
    if (exp % static_cast<U>(2) == static_cast<U>(1))
      ret *= x;
    exp /= static_cast<U>(2);
    x *= x;
  }
  return ::std::move(ret);
}

template< class T >
struct Matrix {
  vector< vector< T > > A;

  Matrix() {}

  Matrix(int n, int m) : A(n, vector< T >(m, 0)) {}

  Matrix(int n) : A(n, vector< T >(n, 0)) {};

  int height() const {
    return (int)(A.size());
  }

  int width() const {
    return (int)(A[0].size());
  }

  inline const vector< T > &operator[](int k) const {
    return (A.at(k));
  }

  inline vector< T > &operator[](int k) {
    return (A.at(k));
  }

  static Matrix I(int n) {
    Matrix mat(n);
    for(int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    int n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector< vector< T > > C(n, vector< T >(m, 0));
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        for(int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const {
    return (Matrix(*this) += B);
  }

  Matrix operator-(const Matrix &B) const {
    return (Matrix(*this) -= B);
  }

  Matrix operator*(const Matrix &B) const {
    return (Matrix(*this) *= B);
  }

  Matrix operator^(const long long k) const {
    return (Matrix(*this) ^= k);
  }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for(int i = 0; i < n; i++) {
      os << "[";
      for(int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }


  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for(int i = 0; i < width(); i++) {
      int idx = -1;
      for(int j = i; j < width(); j++) {
        if(B[j][i] != 0) idx = j;
      }
      if(idx == -1) return (0);
      if(i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for(int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for(int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for(int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

int main(){

    V<ll> M(2), N(2);
    ll S, T, K;
    cin >> M[0] >> N[0] >> S >> M[1] >> N[1] >> T >> K;

    mint p = mint(M[0]) / N[0];
    mint q = mint(M[1]) / N[1];

    Matrix<mint> X(S+T+1, S+T+1), Y(S+T+1, S+T+1);
    Matrix<mint> y(1, S+T+1);
    y[0][T] = 1;

    REP(i, S+T+1){
        if(i == 0){
            X[i][i] = 1; 
        }else{
            mint tmp = mint(1)-p;
            mint tot = 0;
            for(ll j=i;j<S+T;j++){
                X[i][j] = tmp;
                tot += tmp;
                tmp *= p;
            }
            X[i][S+T] = mint(1) - tot;
        }
    }

    REP(i, S+T+1){
        if(i == S+T){
            Y[i][i] = 1; 
        }else{
            mint tmp = mint(1)-q;
            mint tot = 0;
            for(ll j=i;j>0;j--){
                Y[i][j] = tmp;
                tot += tmp;
                tmp *= q;
            }
            Y[i][0] = mint(1) - tot;
        }
    }

    auto Z = X * Y;
    auto z = y * (Z^K);

    cout << z[0][S+T] << endl;
    cout << z[0][0] << endl;

    return 0;
}
0