結果
問題 | No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率 |
ユーザー | theory_and_me |
提出日時 | 2021-06-11 23:20:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 165 ms / 2,000 ms |
コード長 | 7,947 bytes |
コンパイル時間 | 2,421 ms |
コンパイル使用メモリ | 213,044 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-15 02:36:22 |
合計ジャッジ時間 | 5,580 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 7 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 3 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 30 ms
6,816 KB |
testcase_14 | AC | 20 ms
6,816 KB |
testcase_15 | AC | 9 ms
6,820 KB |
testcase_16 | AC | 14 ms
6,820 KB |
testcase_17 | AC | 14 ms
6,816 KB |
testcase_18 | AC | 13 ms
6,816 KB |
testcase_19 | AC | 5 ms
6,820 KB |
testcase_20 | AC | 94 ms
6,820 KB |
testcase_21 | AC | 10 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 164 ms
6,816 KB |
testcase_24 | AC | 164 ms
6,820 KB |
testcase_25 | AC | 164 ms
6,816 KB |
testcase_26 | AC | 164 ms
6,816 KB |
testcase_27 | AC | 164 ms
6,816 KB |
testcase_28 | AC | 165 ms
6,816 KB |
testcase_29 | AC | 165 ms
6,816 KB |
testcase_30 | AC | 164 ms
6,816 KB |
testcase_31 | AC | 164 ms
6,820 KB |
testcase_32 | AC | 164 ms
6,820 KB |
testcase_33 | AC | 164 ms
6,816 KB |
testcase_34 | AC | 14 ms
6,820 KB |
testcase_35 | AC | 14 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define REP(i,n) for(ll i=0;i<(ll)n;i++) #define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n"; #define spa << " " << #define fi first #define se second #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() using ld = long double; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; template<typename T> using V = vector<T>; template<typename T> using P = pair<T, T>; template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); } template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); } template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;} template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;} struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());} template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } void fail() { cout << -1 << '\n'; exit(0); } inline int popcount(const int x) { return __builtin_popcount(x); } inline int popcount(const ll x) { return __builtin_popcountll(x); } template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++) {cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}}; template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0]; for(ll i=1;i<n;i++)cerr spa v[i]; cerr<<"\n";}; const ll INF = (1ll<<62); // const ld EPS = 1e-10; // const ld PI = acos(-1.0); // const ll mod = (int)1e9 + 7; const ll mod = 998244353; template <std::uint_fast64_t Modulus> class modint { // long long から modint を作るときは必ず正の数にしてからコンストラクタに入れること! // そうしないとバグります using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } }; using mint = modint<mod>; using vm = vector<mint>; using vvm = vector<vm>; ostream& operator << (ostream& os, const mint v){ os << v.value(); return os; } template <class T, class U> constexpr T power(T x, U exp) { T ret = static_cast<T>(1); while (exp) { if (exp % static_cast<U>(2) == static_cast<U>(1)) ret *= x; exp /= static_cast<U>(2); x *= x; } return ::std::move(ret); } template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(int n, int m) : A(n, vector< T >(m, 0)) {} Matrix(int n) : A(n, vector< T >(n, 0)) {}; int height() const { return (int)(A.size()); } int width() const { return (int)(A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(int n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { int n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; int main(){ V<ll> M(2), N(2); ll S, T, K; cin >> M[0] >> N[0] >> S >> M[1] >> N[1] >> T >> K; mint p = mint(M[0]) / N[0]; mint q = mint(M[1]) / N[1]; Matrix<mint> X(S+T+1, S+T+1), Y(S+T+1, S+T+1); Matrix<mint> y(1, S+T+1); y[0][T] = 1; REP(i, S+T+1){ if(i == 0){ X[i][i] = 1; }else{ mint tmp = mint(1)-p; mint tot = 0; for(ll j=i;j<S+T;j++){ X[i][j] = tmp; tot += tmp; tmp *= p; } X[i][S+T] = mint(1) - tot; } } REP(i, S+T+1){ if(i == S+T){ Y[i][i] = 1; }else{ mint tmp = mint(1)-q; mint tot = 0; for(ll j=i;j>0;j--){ Y[i][j] = tmp; tot += tmp; tmp *= q; } Y[i][0] = mint(1) - tot; } } auto Z = X * Y; auto z = y * (Z^K); cout << z[0][S+T] << endl; cout << z[0][0] << endl; return 0; }