結果
問題 | No.1549 [Cherry 2nd Tune] BANning Tuple |
ユーザー | torisasami4 |
提出日時 | 2021-06-11 23:26:49 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,337 bytes |
コンパイル時間 | 2,148 ms |
コンパイル使用メモリ | 191,472 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-05-08 19:49:19 |
合計ジャッジ時間 | 67,859 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
5,248 KB |
testcase_01 | AC | 13 ms
5,376 KB |
testcase_02 | AC | 612 ms
5,376 KB |
testcase_03 | AC | 2,794 ms
5,376 KB |
testcase_04 | AC | 2,915 ms
5,376 KB |
testcase_05 | AC | 2,578 ms
5,376 KB |
testcase_06 | AC | 2,651 ms
5,376 KB |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | AC | 74 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define pb(x) push_back(x) #define mp(a, b) make_pair(a, b) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define lscan(x) scanf("%I64d", &x) #define lprint(x) printf("%I64d", x) #define rep(i, n) for (ll i = 0; i < (n); i++) #define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--) #define REP(i, l, r) for (ll i = l; i < (r); i++) #define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--) #define siz(x) (ll)x.size() template <class T> using rque = priority_queue<T, vector<T>, greater<T>>; const ll mod = 998244353; template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template <class T> bool chmax(T &a, const T &b) { if (b > a) { a = b; return 1; } return 0; } ll gcd(ll a, ll b) { if(a == 0) return b; if(b == 0) return a; ll c = a % b; while (c != 0) { a = b; b = c; c = a % b; } return b; } long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector<ll> data; int num; UnionFind(int sz) { data.assign(sz, -1); num = sz; } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; num--; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } ll size(int k) { return (-data[find(k)]); } }; ll M = 1000000007; template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt<mod>(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt<mod>; mint mpow(mint x, ll n) { mint ans = 1; while (n != 0) { if (n & 1) ans *= x; x *= x; n = n >> 1; } return ans; } ll mpow2(ll x, ll n, ll mod) { ll ans = 1; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } return ans; } vector<mint> fac; vector<mint> ifac; void setcomb(int sz = 2000010) { fac.assign(sz + 1, 0); ifac.assign(sz + 1, 0); fac[0] = 1; for (ll i = 0; i < sz; i++) { fac[i + 1] = fac[i] * (i + 1); // n!(mod M) } ifac[sz] = fac[sz].inverse(); for (ll i = sz; i > 0; i--) { ifac[i - 1] = ifac[i] * i; } } mint comb(ll a, ll b) { if(fac.size() == 0) setcomb(); if (a == 0 && b == 0) return 1; if (a < b || a < 0) return 0; return ifac[a - b] * ifac[b] * fac[a]; } mint perm(ll a, ll b) { if(fac.size() == 0) setcomb(); if (a == 0 && b == 0) return 1; if (a < b || a < 0) return 0; return fac[a] * ifac[a - b]; } long long modinv(long long a) { long long b = M, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= M; if (u < 0) u += M; return u; } ll modinv2(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } template <int mod> struct NumberTheoreticTransform { vector<int> rev, rts; int base, max_base, root; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while (tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while (mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while (n > 0) { if (n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if (x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long)mod; } void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while (base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector<mint> &a) { const int n = (int)a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { mint z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector<mint> multiply(vector<mint> a, vector<mint> b) { int need = a.size() + b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); mint inv_sz = inverse(sz); for (int i = 0; i < sz; i++) { a[i] = a[i] * b[i] * inv_sz; } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; using NTT = NumberTheoreticTransform<mod>; int main(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); ll n, q; cin >> n >> q; ll k, a, b, s, t; unordered_map<ll, vector<mint>> m; mint cnt = n; NTT ntt; rep(i,q){ cin >> k >> a >> b >> s >> t; s--; if (m[k].size() == 0){ cnt -= 1; m[k].resize(3001, 1); } REP(j, a, b + 1) m[k][j] = 0; vector<mint> dp(1, 1); for (auto &e : m){ dp = ntt.multiply(dp, e.second); dp.resize(3001); } mint ans = 0, com = 1; rep2(j, t + 1) ans += dp[j] * com, com *= cnt + t - j + 1, com /= t - j + 1; com = 1; rep2(j, s + 1) ans -= dp[j] * com, com *= cnt + s - j + 1, com /= s - j + 1; cout << ans << endl; } }