結果
問題 | No.1549 [Cherry 2nd Tune] BANning Tuple |
ユーザー | 👑 emthrm |
提出日時 | 2021-06-11 23:38:52 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 18,846 bytes |
コンパイル時間 | 2,811 ms |
コンパイル使用メモリ | 233,996 KB |
実行使用メモリ | 14,016 KB |
最終ジャッジ日時 | 2024-05-08 20:10:22 |
合計ジャッジ時間 | 26,983 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
10,532 KB |
testcase_01 | AC | 126 ms
6,940 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | TLE | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | TLE | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(int divisor) { assert(divisor == M); } static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(int x, bool init = false) { // assert(0 <= x && x < M && std::__gcd(x, M) == 1); static std::vector<MInt> inverse{0, 1}; int prev = inverse.size(); if (init && x >= prev) { // "x!" and "M" must be disjoint. inverse.resize(x + 1); for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i); } if (x < inverse.size()) return inverse[x]; unsigned int a = x, b = M; int u = 1, v = 0; while (b) { unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(int x) { static std::vector<MInt> f{1}; int prev = f.size(); if (x >= prev) { f.resize(x + 1); for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i; } return f[x]; } static MInt fact_inv(int x) { static std::vector<MInt> finv{1}; int prev = finv.size(); if (x >= prev) { finv.resize(x + 1); finv[x] = inv(fact(x).val); for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i; } return finv[x]; } static MInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return 0; if (n - k > k) k = n - k; return fact(n) * fact_inv(k) * fact_inv(n - k); } static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) res *= inv(i) * n--; return res; } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; } MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; } MInt &operator/=(const MInt &x) { return *this *= inv(x.val); } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == M) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? M - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } } using ModInt = MInt<MOD>; template <int T> struct NumberTheoreticTransform { using ModInt = MInt<T>; NumberTheoreticTransform() { for (int i = 0; i < 23; ++i) { if (primes[i][0] == ModInt::get_mod()) { n_max = 1 << primes[i][2]; root = ModInt(primes[i][1]).pow((ModInt::get_mod() - 1) >> primes[i][2]); return; } } assert(false); } void sub_dft(std::vector<ModInt> &a) { int n = a.size(); assert(__builtin_popcount(n) == 1); calc(n); int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n); for (int i = 0; i < n; ++i) { int j = butterfly[i] >> shift; if (i < j) std::swap(a[i], a[j]); } for (int block = 1; block < n; block <<= 1) { int den = __builtin_ctz(block); for (int i = 0; i < n; i += (block << 1)) for (int j = 0; j < block; ++j) { ModInt tmp = a[i + j + block] * omega[den][j]; a[i + j + block] = a[i + j] - tmp; a[i + j] += tmp; } } } template <typename U> std::vector<ModInt> dft(const std::vector<U> &a) { int n = a.size(), lg = 1; while ((1 << lg) < n) ++lg; std::vector<ModInt> A(1 << lg, 0); for (int i = 0; i < n; ++i) A[i] = a[i]; sub_dft(A); return A; } void idft(std::vector<ModInt> &a) { int n = a.size(); assert(__builtin_popcount(n) == 1); sub_dft(a); std::reverse(a.begin() + 1, a.end()); ModInt inv_n = ModInt::inv(n); for (int i = 0; i < n; ++i) a[i] *= inv_n; } template <typename U> std::vector<ModInt> convolution(const std::vector<U> &a, const std::vector<U> &b) { int a_sz = a.size(), b_sz = b.size(), sz = a_sz + b_sz - 1, lg = 1; while ((1 << lg) < sz) ++lg; int n = 1 << lg; std::vector<ModInt> A(n, 0), B(n, 0); for (int i = 0; i < a_sz; ++i) A[i] = a[i]; for (int i = 0; i < b_sz; ++i) B[i] = b[i]; sub_dft(A); sub_dft(B); for (int i = 0; i < n; ++i) A[i] *= B[i]; idft(A); A.resize(sz); return A; } private: int primes[23][3]{ {16957441, 329, 14}, {17006593, 26, 15}, {19529729, 770, 17}, {167772161, 3, 25}, {469762049, 3, 26}, {645922817, 3, 23}, {897581057, 3, 23}, {924844033, 5, 21}, {935329793, 3, 22}, {943718401, 7, 22}, {950009857, 7, 21}, {962592769, 7, 21}, {975175681, 17, 21}, {976224257, 3, 20}, {985661441, 3, 22}, {998244353, 3, 23}, {1004535809, 3, 21}, {1007681537, 3, 20}, {1012924417, 5, 21}, {1045430273, 3, 20}, {1051721729, 6, 20}, {1053818881, 7, 20}, {1224736769, 3, 24} }; int n_max; ModInt root; std::vector<int> butterfly{0}; std::vector<std::vector<ModInt>> omega{{1}}; void calc(int n) { int prev_n = butterfly.size(); if (n <= prev_n) return; assert(n <= n_max); butterfly.resize(n); int prev_lg = omega.size(), lg = __builtin_ctz(n); for (int i = 1; i < prev_n; ++i) butterfly[i] <<= lg - prev_lg; for (int i = prev_n; i < n; ++i) butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1)); omega.resize(lg); for (int i = prev_lg; i < lg; ++i) { omega[i].resize(1 << i); ModInt tmp = root.pow((ModInt::get_mod() - 1) / (1 << (i + 1))); for (int j = 0; j < (1 << (i - 1)); ++j) { omega[i][j << 1] = omega[i - 1][j]; omega[i][(j << 1) + 1] = omega[i - 1][j] * tmp; } } } }; template <typename T> struct FormalPowerSeries { using MUL = std::function<std::vector<T>(const std::vector<T>&, const std::vector<T>&)>; using SQR = std::function<bool(const T&, T&)>; std::vector<T> co; FormalPowerSeries(int deg = 0) : co(deg + 1, 0) {} FormalPowerSeries(const std::vector<T> &co) : co(co) {} FormalPowerSeries(std::initializer_list<T> init) : co(init.begin(), init.end()) {} template <typename InputIter> FormalPowerSeries(InputIter first, InputIter last) : co(first, last) {} inline const T &operator[](int term) const { return co[term]; } inline T &operator[](int term) { return co[term]; } static void set_mul(MUL mul) { get_mul() = mul; } static void set_sqr(SQR sqr) { get_sqr() = sqr; } void resize(int deg) { co.resize(deg + 1, 0); } void shrink() { while (co.size() > 1 && co.back() == 0) co.pop_back(); } int degree() const { return static_cast<int>(co.size()) - 1; } FormalPowerSeries &operator=(const std::vector<T> &new_co) { co.resize(new_co.size()); std::copy(new_co.begin(), new_co.end(), co.begin()); return *this; } FormalPowerSeries &operator=(const FormalPowerSeries &x) { co.resize(x.co.size()); std::copy(x.co.begin(), x.co.end(), co.begin()); return *this; } FormalPowerSeries &operator+=(const FormalPowerSeries &x) { int n = x.co.size(); if (n > co.size()) resize(n - 1); for (int i = 0; i < n; ++i) co[i] += x.co[i]; return *this; } FormalPowerSeries &operator-=(const FormalPowerSeries &x) { int n = x.co.size(); if (n > co.size()) resize(n - 1); for (int i = 0; i < n; ++i) co[i] -= x.co[i]; return *this; } FormalPowerSeries &operator*=(T x) { for (T &e : co) e *= x; return *this; } FormalPowerSeries &operator*=(const FormalPowerSeries &x) { return *this = get_mul()(co, x.co); } FormalPowerSeries &operator/=(T x) { assert(x != 0); T inv_x = static_cast<T>(1) / x; for (T &e : co) e *= inv_x; return *this; } FormalPowerSeries &operator/=(const FormalPowerSeries &x) { int sz = x.co.size(); if (sz > co.size()) return *this = FormalPowerSeries(); int n = co.size() - sz + 1; FormalPowerSeries a(co.rbegin(), co.rbegin() + n), b(x.co.rbegin(), x.co.rbegin() + std::min(sz, n)); b = b.inv(n - 1); a *= b; return *this = FormalPowerSeries(a.co.rend() - n, a.co.rend()); } FormalPowerSeries &operator%=(const FormalPowerSeries &x) { *this -= *this / x * x; co.resize(static_cast<int>(x.co.size()) - 1); if (co.empty()) co = {0}; return *this; } FormalPowerSeries &operator<<=(int n) { co.insert(co.begin(), n, 0); return *this; } FormalPowerSeries &operator>>=(int n) { if (co.size() < n) return *this = FormalPowerSeries(); co.erase(co.begin(), co.begin() + n); return *this; } bool operator==(const FormalPowerSeries &x) const { FormalPowerSeries a(*this), b(x); a.shrink(); b.shrink(); int n = a.co.size(); if (n != b.co.size()) return false; for (int i = 0; i < n; ++i) if (a.co[i] != b.co[i]) return false; return true; } bool operator!=(const FormalPowerSeries &x) const { return !(*this == x); } FormalPowerSeries operator+() const { return *this; } FormalPowerSeries operator-() const { FormalPowerSeries res(*this); for (T &e : res.co) e = -e; return res; } FormalPowerSeries operator+(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) += x; } FormalPowerSeries operator-(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) -= x; } FormalPowerSeries operator*(T x) const { return FormalPowerSeries(*this) *= x; } FormalPowerSeries operator*(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) *= x; } FormalPowerSeries operator/(T x) const { return FormalPowerSeries(*this) /= x; } FormalPowerSeries operator/(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) /= x; } FormalPowerSeries operator%(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) %= x; } FormalPowerSeries operator<<(int n) const { return FormalPowerSeries(*this) <<= n; } FormalPowerSeries operator>>(int n) const { return FormalPowerSeries(*this) >>= n; } T horner(T x) const { T res = 0; for (int i = static_cast<int>(co.size()) - 1; i >= 0; --i) (res *= x) += co[i]; return res; } FormalPowerSeries differential() const { int n = co.size(); assert(n >= 1); FormalPowerSeries res(n - 1); for (int i = 1; i < n; ++i) res.co[i - 1] = co[i] * i; return res; } FormalPowerSeries integral() const { int n = co.size(); FormalPowerSeries res(n + 1); for (int i = 0; i < n; ++i) res[i + 1] = co[i] / (i + 1); return res; } FormalPowerSeries exp(int deg = -1) const { assert(co[0] == 0); int n = co.size(); if (deg == -1) deg = n - 1; FormalPowerSeries one{1}, res = one; for (int i = 1; i <= deg; i <<= 1) { res *= FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1)) - res.log((i << 1) - 1) + one; res.co.resize(i << 1); } res.co.resize(deg + 1); return res; } FormalPowerSeries inv(int deg = -1) const { assert(co[0] != 0); int n = co.size(); if (deg == -1) deg = n - 1; FormalPowerSeries res{static_cast<T>(1) / co[0]}; for (int i = 1; i <= deg; i <<= 1) { res = res + res - res * res * FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1)); res.co.resize(i << 1); } res.co.resize(deg + 1); return res; } FormalPowerSeries log(int deg = -1) const { assert(co[0] == 1); if (deg == -1) deg = static_cast<int>(co.size()) - 1; FormalPowerSeries integrand = differential() * inv(deg - 1); integrand.co.resize(deg); return integrand.integral(); } FormalPowerSeries pow(long long exponent, int deg = -1) const { int n = co.size(); if (deg == -1) deg = n - 1; for (int i = 0; i < n; ++i) { if (co[i] != 0) { long long shift = exponent * i; if (shift > deg) break; T tmp = 1, base = co[i]; long long e = exponent; while (e > 0) { if (e & 1) tmp *= base; base *= base; e >>= 1; } return ((((*this >> i) * (static_cast<T>(1) / co[i])).log(deg - shift) * static_cast<T>(exponent)).exp(deg - shift) * tmp) << shift; } } return FormalPowerSeries(deg); } FormalPowerSeries mod_pow(long long exponent, const FormalPowerSeries &md) const { FormalPowerSeries inv_rev_md = FormalPowerSeries(md.co.rbegin(), md.co.rend()).inv(); int deg_of_md = md.co.size(); auto mod_mul = [&](FormalPowerSeries &multiplicand, const FormalPowerSeries &multiplier) -> void { multiplicand *= multiplier; if (deg_of_md <= multiplicand.co.size()) { int n = multiplicand.co.size() - deg_of_md + 1; FormalPowerSeries quotient = FormalPowerSeries(multiplicand.co.rbegin(), multiplicand.co.rbegin() + n) * FormalPowerSeries(inv_rev_md.co.begin(), inv_rev_md.co.begin() + std::min(static_cast<int>(inv_rev_md.co.size()), n)); multiplicand -= FormalPowerSeries(quotient.co.rend() - n, quotient.co.rend()) * md; } multiplicand.co.resize(deg_of_md - 1); if (multiplicand.co.empty()) multiplicand.co = {0}; }; FormalPowerSeries res{1}, base = *this; mod_mul(base, res); while (exponent > 0) { if (exponent & 1) mod_mul(res, base); mod_mul(base, base); exponent >>= 1; } return res; } FormalPowerSeries sqrt(int deg = -1) const { int n = co.size(); if (deg == -1) deg = n - 1; if (co[0] == 0) { for (int i = 1; i < n; ++i) { if (co[i] == 0) continue; if (i & 1) return FormalPowerSeries(-1); int shift = i >> 1; if (deg < shift) break; FormalPowerSeries res = (*this >> i).sqrt(deg - shift); if (res.co.empty()) return FormalPowerSeries(-1); res <<= shift; res.resize(deg); return res; } return FormalPowerSeries(deg); } T s; if (!get_sqr()(co[0], s)) return FormalPowerSeries(-1); FormalPowerSeries res{s}; T half = static_cast<T>(1) / 2; for (int i = 1; i <= deg; i <<= 1) { (res += FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1)) * res.inv((i << 1) - 1)) *= half; } res.resize(deg); return res; } FormalPowerSeries translate(T c) const { int n = co.size(); std::vector<T> fact(n, 1), inv_fact(n, 1); for (int i = 1; i < n; ++i) fact[i] = fact[i - 1] * i; inv_fact[n - 1] = static_cast<T>(1) / fact[n - 1]; for (int i = n - 1; i > 0; --i) inv_fact[i - 1] = inv_fact[i] * i; std::vector<T> g(n), ex(n); for (int i = 0; i < n; ++i) g[n - 1 - i] = co[i] * fact[i]; T pow_c = 1; for (int i = 0; i < n; ++i) { ex[i] = pow_c * inv_fact[i]; pow_c *= c; } std::vector<T> conv = get_mul()(g, ex); FormalPowerSeries res(n - 1); for (int i = 0; i < n; ++i) res[i] = conv[n - 1 - i] * inv_fact[i]; return res; } private: static MUL &get_mul() { static MUL mul = [](const std::vector<T> &a, const std::vector<T> &b) -> std::vector<T> { int n = a.size(), m = b.size(); std::vector<T> res(n + m - 1, 0); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[i + j] += a[i] * b[j]; return res; }; return mul; } static SQR &get_sqr() { static SQR sqr = [](const T &a, T &res) -> bool { return false; }; return sqr; } }; int main() { NumberTheoreticTransform<MOD> ntt; FormalPowerSeries<ModInt>::set_mul([&](const vector<ModInt> &a, const vector<ModInt> &b) -> vector<ModInt> { return ntt.convolution(a, b); }); constexpr int D = 3000; ll n; int q; cin >> n >> q; FormalPowerSeries<ModInt> f({1, -1}); f = f.inv(D); auto make_fps = [&](int l, int r) -> FormalPowerSeries<ModInt> { FormalPowerSeries<ModInt> g(l); fill(ALL(g.co), 1); g += f << r; g.resize(D); return g; }; unordered_map<ll, pair<int, int>> cond; while (q--) { ll k; int a, b; cin >> k >> a >> b; if (cond.count(k) == 0) cond[k] = {D, 0}; chmin(cond[k].first, a - 1); chmax(cond[k].second, b + 1); FormalPowerSeries<ModInt> g({1}); for (auto [_, lr] : cond) { auto [l, r] = lr; g *= make_fps(l, r); g.resize(D); } int s, t; cin >> s >> t; ModInt ans = 0; REP(i, t + 1) { ans += g[i] * ModInt::large_nCk(n - cond.size() + (t - i), t - i); } REP(i, s) { ans -= g[i] * ModInt::large_nCk(n - cond.size() + (s - 1 - i), s - 1 - i); } cout << ans << '\n'; } return 0; }