結果
問題 | No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率 |
ユーザー | ningenMe |
提出日時 | 2021-06-11 23:51:21 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 246 ms / 2,000 ms |
コード長 | 9,401 bytes |
コンパイル時間 | 2,560 ms |
コンパイル使用メモリ | 205,924 KB |
最終ジャッジ日時 | 2025-01-22 07:17:05 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 36 |
ソースコード
#include <bits/stdc++.h> using namespace std; using int128 = __int128_t; using int64 = long long; using int32 = int; using uint128 = __uint128_t; using uint64 = unsigned long long; using uint32 = unsigned int; #define ALL(obj) (obj).begin(),(obj).end() template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>; constexpr int64 MOD = 1'000'000'000LL + 7; //' constexpr int64 MOD2 = 998244353; constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL; constexpr int64 LOWINF = 1'000'000'000'000'000LL; //' constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const deque<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;} inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;} inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+(b-1))/b;}// return ceil(a/b) void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title ModInt * @docs md/util/ModInt.md */ template<long long mod> class ModInt { public: long long x; constexpr ModInt():x(0) {} constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {} ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const long long y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const int y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const long long y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const int y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator*=(const ModInt &p) {x = (x * p.x % mod);return *this;} ModInt &operator*=(const long long y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator*=(const int y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator^=(const ModInt &p) {x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const long long y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const int y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator/=(const ModInt &p) {*this *= p.inv();return *this;} ModInt &operator/=(const long long y) {ModInt p(y);*this *= p.inv();return *this;} ModInt &operator/=(const int y) {ModInt p(y);*this *= p.inv();return *this;} ModInt operator=(const int y) {ModInt p(y);*this = p;return *this;} ModInt operator=(const long long y) {ModInt p(y);*this = p;return *this;} ModInt operator-() const {return ModInt(-x); } ModInt operator++() {x++;if(x>=mod) x-=mod;return *this;} ModInt operator--() {x--;if(x<0) x+=mod;return *this;} ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const {int a=x,b=mod,u=1,v=0,t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);} return ModInt(u);} ModInt pow(long long n) const {ModInt ret(1), mul(x);for(;n > 0;mul *= mul,n >>= 1) if(n & 1) ret *= mul;return ret;} friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;} friend istream &operator>>(istream &is, ModInt &a) {long long t;is >> t;a = ModInt<mod>(t);return (is);} }; using modint = ModInt<MOD2>; /* * @title Matrix - 行列演算 * @docs md/math/Matrix.md */ template <class T, int H, int W = H> class Matrix { public: int h,w; array<array<T,W>,H> a; Matrix():h(H),w(W){ // do nothing } Matrix(const vector<vector<T>>& vec):h(H),w(W) { assert(vec.size()==H && vec.front().size()==W); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]=vec[i][j]; } static Matrix E() { assert(H==W); Matrix res = Matrix(); for(int i = 0; i < H; ++i) res[i][i]=1; return res; } Matrix &operator+=(const Matrix &r) { assert(H==r.h&&W==r.w); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]+=r[i][j]; return *this; } Matrix &operator-=(const Matrix &r) { assert(H==r.h&&W==r.w); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]-=r[i][j]; return *this; } Matrix &operator*=(const Matrix &r) { assert(W==r.h); Matrix res = Matrix(); for(int i = 0; i < H; ++i) for(int j = 0; j < r.w; ++j) for(int k = 0; k < W; ++k) res[i][j]+=(a[i][k])*(r[k][j]); a.swap(res.a); return *this; } Matrix operator+(const Matrix& r) const { return Matrix(*this) += r; } Matrix operator-(const Matrix& r) const { return Matrix(*this) -= r; } Matrix operator*(const Matrix& r) const { return Matrix(*this) *= r; } inline array<T,W> &operator[](int i) { return a[i]; } inline const array<T,W> &operator[](int i) const { return a[i]; } Matrix pow(long long K) const { assert(H == W); Matrix x(*this); Matrix res = this->E(); for (; K > 0; K /= 2) { if (K & 1) res *= x; x *= x; } return res; } T determinant(void) const { assert(H==W); Matrix x(*this); T res = 1; for(int i = 0; i < H; i++) { int idx = -1; for(int j = i; j < W; j++) if(x[j][i] != 0) idx = j; if(idx == -1) return 0; if(i != idx) { res *= -1; swap(x[i], x[idx]); } res *= x[i][i]; T tmp = x[i][i]; for(int j = 0; j < W; ++j) x[i][j] /= tmp; for(int j = i + 1; j < H; j++) { tmp = x[j][i]; for(int k = 0; k < W; k++) x[j][k] -= x[i][k]*tmp; } } return res; } }; constexpr int M = 120; using matrix = Matrix<modint,M,M>; /** * @url * @est */ int main() { cin.tie(0);ios::sync_with_stdio(false); modint ma,na;int s; cin >> ma >> na >> s; modint mb,nb;int t; cin >> mb >> nb >> t; modint pa = ma/na, qa = (na-ma)/na; modint pb = mb/nb, qb = (nb-mb)/nb; modint aaa = 0, bbb = 0; matrix mta,mtb; int K; cin >> K; { mta[M-1][M-1]=1; mta[M-2][M-2]=1; mta[M-2][0]=1; for(int j=s+t-1; 0<j;--j) { mta[s+t][j] = pa.pow(s+t-j); } } for(int i=s+t-1;0<=i;--i) { for(int j=i; 0<j;--j) { mta[i][j] = pa.pow(abs(i-j))*qa; } } { mtb[M-1][M-1]=1; mtb[M-1][s+t]=1; mtb[M-2][M-2]=1; for(int j=1; j<s+t;++j) { mtb[0][j] = pb.pow(j); } } for(int i=1;i<s+t;++i) { for(int j=i; j<s+t;++j) { mtb[i][j] = pb.pow(abs(i-j))*qb; } } // for(int i=0;i<M; ++i) { // for(int j=0;j<M;++j) { // cout << mta[i][j] << " "; // } // cout << endl; // } // print(); // for(int i=0;i<M; ++i) { // for(int j=0;j<M;++j) { // cout << mtb[i][j] << " "; // } // cout << endl; // } // print(); auto mtc = (mtb * mta).pow(K-1); auto mtac = (mta * mtc); aaa = mtac[M-1][t] + mtac[s+t][t]; auto mtbc = (mtb * mtac); bbb = mtbc[M-2][t] + mtbc[0][t]; cout << aaa << "\n" << bbb << "\n"; return 0; }