結果
問題 | No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率 |
ユーザー | midri1784 |
提出日時 | 2021-06-11 23:53:25 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 217 ms / 2,000 ms |
コード長 | 7,915 bytes |
コンパイル時間 | 2,151 ms |
コンパイル使用メモリ | 208,316 KB |
最終ジャッジ日時 | 2025-01-22 07:19:55 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 36 |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long i64; typedef unsigned long long ui64; typedef vector<i64> vi; typedef vector<vi> vvi; typedef pair<i64, i64> pi; #define pb push_back #define sz(a) i64((a).size()) #define all(c) (c).begin(), (c).end() #define REP(s, e, i) for(i=(s); i < (e); ++i) inline void RI(i64 &i) {scanf("%lld", &(i));} inline void RVI(vi &v) { for(i64 i=0;i<sz(v);++i) { RI(v[i]); } } inline void RVVI(vvi &vv) { for(i64 i=0;i<sz(vv);++i) { RVI(vv[i]); } } inline void WI(const i64 &i) {printf("%lld\n", i);} inline void WVI(const vi &v, char sep=' ') { for(i64 i=0;i<sz(v);++i) { if(i != 0){ printf("%c", sep); } printf("%lld", v[i]);} printf("\n"); } inline void WS(const string &s) { printf("%s\n", s.c_str()); } inline void WB(bool b, const string &yes, const string &no) { if(b){ WS(yes);} else { WS(no);} } inline void YESNO(bool b) { WB(b, "YES", "NO"); } inline void YesNo(bool b) { WB(b, "Yes", "No"); } #define BUF_LENGTH 1000000 inline void RS(string &s) {static char buf[BUF_LENGTH]; scanf("%s", buf); s = buf;} template<typename T> inline bool IN(T &S, const typename T::key_type &key) { return S.find(key) != S.end(); } template<typename T> inline bool ON(const T &b, i64 idx) { return ((T(1) << idx) & b) != 0; } template<long long M, typename T=long long> struct modint { modint(T v=T(0)) : val((v >= 0 ? v : (M - ((-v) % M))) % M) {} using this_type = modint<M, T>; T val; this_type operator++(int) { this_type ret = *this; val++; val %= M; return ret; } this_type operator--(int) { this_type ret = *this; val += M-1; val %= M; return ret; } this_type &operator++() { val++; val %= M; return *this; } this_type &operator--() { val += M-1; val %= M; return *this; } this_type operator+() const { return *this; } this_type operator-() const { return this_type(M-val); }; friend this_type operator+(const this_type &lhs, const this_type &rhs) { return this_type(lhs) += rhs; } friend this_type operator-(const this_type &lhs, const this_type &rhs) { return this_type(lhs) -= rhs; } friend this_type operator*(const this_type &lhs, const this_type &rhs) { return this_type(lhs) *= rhs; } friend this_type operator/(const this_type &lhs, const this_type &rhs) { return this_type(lhs) /= rhs; } this_type pow(long long b) const { this_type ret = 1, a = *this; while(b != 0) { if(b % 2 != 0) { ret *= a; } b /= 2; a = a * a; } return ret; } this_type inv() const { return pow(M-2); } this_type& operator+=(const this_type &rhs) { val += rhs.val; val %= M; return *this; } this_type& operator-=(const this_type &rhs) { val += M - rhs.val; val %= M; return *this; } this_type& operator*=(const this_type &rhs) { val *= rhs.val; val %= M; return *this; } this_type& operator/=(const this_type &rhs) { *this *= rhs.inv(); return *this; } friend bool operator==(const this_type &lhs, const this_type &rhs) { return lhs.val == rhs.val; } friend bool operator!=(const this_type &lhs, const this_type &rhs) { return lhs.val != rhs.val; } T mod() const {return M;} }; using mi = modint<998244353>; //using mi = modint<1000000007>; using vmi = vector<mi>; using vvmi = vector<vmi>; // row initializers template<typename T> vector<T> init_row(size_t cols) { return vector<T>(cols, 0); } template<typename T, typename R = vector<T>> class matrix_ { public: using this_type = matrix_<T>; matrix_(size_t rows, size_t cols) { assert(rows > 0 && cols > 0); data.resize(rows, init_row<T>(cols)); } matrix_(const vector<R> &values) { assert(!values.empty()); data = values; } T& operator()(size_t r, size_t c) { assert(0 <= r && r < rows()); assert(0 <= c && c < cols()); return data[r][c]; } const T& operator()(size_t r, size_t c) const { assert(0 <= r && r < rows()); assert(0 <= c && c < cols()); return data[r][c]; } ///// // matrix-matrix operations this_type &operator+=(const this_type &rhs) { assert(rows() == rhs.rows() && cols() == rhs.cols()); for(size_t r=0;r<rows;++r) { for(size_t c=0;c<cols;++c) { (*this)(r, c) += rhs(r, c); }} return *this; } this_type &operator-=(const this_type &rhs) { assert(rows() == rhs.rows() && cols() == rhs.cols()); for(size_t r=0;r<rows;++r) { for(size_t c=0;c<cols;++c) { (*this)(r, c) -= rhs(r, c); }} return *this; } this_type operator*=(const this_type &rhs) { assert(cols() == rhs.rows()); this_type res(rows(), rhs.cols()); for(size_t r=0;r<rows();++r) { for(size_t c=0;c<rhs.cols(); ++c) { for(size_t i=0;i<cols();++i) { res(r, c) += (*this)(r, i) * rhs(i, c); } }} (*this).swap(res); return *this; } friend this_type operator+(const this_type &lhs, const this_type &rhs) { return this_type(lhs) += rhs; } friend this_type operator-(const this_type &lhs, const this_type &rhs) { return this_type(lhs) -= rhs; } friend this_type operator*(const this_type &lhs, const this_type &rhs) { return this_type(lhs) *= rhs; } ///// // matrix-scalar operations this_type operator+=(const T &rhs) { for(size_t r=0;r<rows();++r) { for(size_t c=0;c<cols(); ++c) { (*this)(r, c) += rhs; } } return *this; } this_type operator-=(const T &rhs) { (*this) += (-rhs); return *this; } this_type operator*=(const T &rhs) { for(size_t r=0;r<rows();++r) { for(size_t c=0;c<cols(); ++c) { (*this)(r, c) *= rhs; } } return *this; } this_type operator+() const {return *this; } this_type operator-() const {this_type res(data); res *= -1; return res; }; size_t rows() const { return data.size(); } size_t cols() const { return data[0].size(); } void swap(this_type &rhs) { data.swap(rhs.data); } private: vector<R> data; }; using matrix = matrix_<mi>; matrix matpow(const matrix &a, i64 p) { matrix res(a.rows(), a.cols()); for(i64 i=0;i<res.rows();++i) { // set identity res(i, i) = 1; } matrix aa = a; while(p != 0) { if(p % 2 == 1) { res = res * aa; } aa = aa * aa; p /= 2; } return res; } int main(int argc, char *argv[]) { i64 i, j, k; i64 MA, NA, S; cin >> MA >> NA >> S; i64 MB, NB, T; cin >> MB >> NB >> T; i64 K; cin >> K; i64 SIZE = S + T + 1; matrix XA(SIZE, SIZE), XB(SIZE, SIZE); // X = idx - T auto v2i = [&](i64 v) { return v + T; }; // make XA XA(0, 0) = XA(S+T, S+T) = 1; mi PA = mi(MA) * mi(NA).inv(); mi RA = 1 - PA; for(i64 v=-T+1;v<S;++v) { XA(v2i(v), v2i(v)) = RA; mi PS = RA; for(i64 u=v+1;u<S;++u) { XA(v2i(u), v2i(v)) = XA(v2i(u-1), v2i(v)) * PA; PS += XA(v2i(u), v2i(v)); } XA(v2i(S), v2i(v)) = 1 - PS; } // make XB XB(0, 0) = XB(S+T, S+T) = 1; mi PB = mi(MB) * mi(NB).inv(); mi RB = 1 - PB; for(i64 v=-T+1;v<S;++v) { XB(v2i(v), v2i(v)) = RB; mi PS = RB; for(i64 u=v-1;u>-T;--u) { XB(v2i(u), v2i(v)) = XB(v2i(u+1), v2i(v)) * PB; PS += XB(v2i(u), v2i(v)); } XB(v2i(-T), v2i(v)) = 1 - PS; } #if 0 REP(0, SIZE, i) { REP(0, SIZE, j) { cerr << XA(i,j).val << " "; } cerr << endl; } REP(0, SIZE, i) { REP(0, SIZE, j) { cerr << XB(i,j).val << " "; } cerr << endl; } #endif matrix X = XB * XA; #if 0 REP(0, SIZE, i) { REP(0, SIZE, j) { cerr << X(i,j).val << " "; } cerr << endl; } #endif matrix XP = matpow(X, K); matrix U(SIZE, 1); U(v2i(0), 0) = 1; matrix V = XP * U; #if 0 REP(0, SIZE, i) { cerr << U(i,0).val << " "; } cerr << endl; REP(0, SIZE, i) { cerr << V(i,0).val << " "; } cerr << endl; #endif WI(V(v2i(S), 0).val); WI(V(v2i(-T), 0).val); return 0; }