結果

問題 No.1549 [Cherry 2nd Tune] BANning Tuple
ユーザー rniyarniya
提出日時 2021-06-11 23:53:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 715 ms / 4,000 ms
コード長 21,175 bytes
コンパイル時間 3,445 ms
コンパイル使用メモリ 241,756 KB
実行使用メモリ 8,192 KB
最終ジャッジ日時 2024-11-08 10:35:20
合計ジャッジ時間 15,696 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 9 ms
5,248 KB
testcase_01 AC 23 ms
5,248 KB
testcase_02 AC 285 ms
5,248 KB
testcase_03 AC 603 ms
5,888 KB
testcase_04 AC 669 ms
6,016 KB
testcase_05 AC 542 ms
5,760 KB
testcase_06 AC 648 ms
5,632 KB
testcase_07 AC 711 ms
8,192 KB
testcase_08 AC 714 ms
8,192 KB
testcase_09 AC 715 ms
8,192 KB
testcase_10 AC 710 ms
8,192 KB
testcase_11 AC 710 ms
8,192 KB
testcase_12 AC 711 ms
8,192 KB
testcase_13 AC 709 ms
8,192 KB
testcase_14 AC 710 ms
8,192 KB
testcase_15 AC 714 ms
8,192 KB
testcase_16 AC 711 ms
8,192 KB
testcase_17 AC 711 ms
8,192 KB
testcase_18 AC 712 ms
8,192 KB
testcase_19 AC 113 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(), (x).end()

template <typename T> istream& operator>>(istream& is, vector<T>& v) {
    for (T& x : v) is >> x;
    return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
    for (int i = 0; i < (int)v.size(); i++) {
        os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
    }
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <typename T, typename U, typename V> ostream& operator<<(ostream& os, const tuple<T, U, V>& t) {
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')';
    return os;
}
template <typename T, typename U, typename V, typename W> ostream& operator<<(ostream& os, const tuple<T, U, V, W>& t) {
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')';
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {
    os << '{';
    for (auto itr = m.begin(); itr != m.end();) {
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr != m.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {
    os << '{';
    for (auto itr = m.begin(); itr != m.end();) {
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr != m.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {
    for (int i = 0; i < (int)v.size(); i++) {
        os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
    }
    return os;
}

void debug_out() { cerr << '\n'; }
template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {
    cerr << head;
    if (sizeof...(Tail) > 0) cerr << ", ";
    debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...)                                                                   \
    cerr << " ";                                                                     \
    cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \
    cerr << " ";                                                                     \
    debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif

template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }

template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}
#pragma endregion

/**
 * @brief modint
 * @docs docs/modulo/modint.md
 */
template <uint32_t mod> class modint {
    using i64 = int64_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

public:
    u32 v;
    constexpr modint(const i64 x = 0) noexcept : v(x < 0 ? mod - 1 - (-(x + 1) % mod) : x % mod) {}
    constexpr u32& value() noexcept { return v; }
    constexpr const u32& value() const noexcept { return v; }
    constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
    constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
    constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
    constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
    constexpr modint& operator+=(const modint& rhs) noexcept {
        v += rhs.v;
        if (v >= mod) v -= mod;
        return *this;
    }
    constexpr modint& operator-=(const modint& rhs) noexcept {
        if (v < rhs.v) v += mod;
        v -= rhs.v;
        return *this;
    }
    constexpr modint& operator*=(const modint& rhs) noexcept {
        v = (u64)v * rhs.v % mod;
        return *this;
    }
    constexpr modint& operator/=(const modint& rhs) noexcept { return *this *= rhs.pow(mod - 2); }
    constexpr modint pow(u64 exp) const noexcept {
        modint self(*this), res(1);
        while (exp > 0) {
            if (exp & 1) res *= self;
            self *= self;
            exp >>= 1;
        }
        return res;
    }
    constexpr modint& operator++() noexcept {
        if (++v == mod) v = 0;
        return *this;
    }
    constexpr modint& operator--() noexcept {
        if (v == 0) v = mod;
        return --v, *this;
    }
    constexpr modint operator++(int) noexcept {
        modint t = *this;
        return ++*this, t;
    }
    constexpr modint operator--(int) noexcept {
        modint t = *this;
        return --*this, t;
    }
    constexpr modint operator-() const noexcept { return modint(mod - v); }
    template <class T> friend constexpr modint operator+(T x, modint y) noexcept { return modint(x) + y; }
    template <class T> friend constexpr modint operator-(T x, modint y) noexcept { return modint(x) - y; }
    template <class T> friend constexpr modint operator*(T x, modint y) noexcept { return modint(x) * y; }
    template <class T> friend constexpr modint operator/(T x, modint y) noexcept { return modint(x) / y; }
    constexpr bool operator==(const modint& rhs) const noexcept { return v == rhs.v; }
    constexpr bool operator!=(const modint& rhs) const noexcept { return v != rhs.v; }
    constexpr bool operator!() const noexcept { return !v; }
    friend istream& operator>>(istream& s, modint& rhs) noexcept {
        i64 v;
        rhs = modint{(s >> v, v)};
        return s;
    }
    friend ostream& operator<<(ostream& s, const modint& rhs) noexcept { return s << rhs.v; }
};

/**
 * @brief Number Theoretic Transform
 * @docs docs/convolution/NumberTheoreticTransform.md
 */
template <int mod> struct NumberTheoreticTransform {
    using Mint = modint<mod>;
    vector<Mint> roots;
    vector<int> rev;
    int base, max_base;
    Mint root;
    NumberTheoreticTransform() : base(1), rev{0, 1}, roots{Mint(0), Mint(1)} {
        int tmp = mod - 1;
        for (max_base = 0; tmp % 2 == 0; max_base++) tmp >>= 1;
        root = 2;
        while (root.pow((mod - 1) >> 1) == 1) root++;
        root = root.pow((mod - 1) >> max_base);
    }
    void ensure_base(int nbase) {
        if (nbase <= base) return;
        rev.resize(1 << nbase);
        for (int i = 0; i < (1 << nbase); i++) {
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (nbase - 1));
        }
        roots.resize(1 << nbase);
        for (; base < nbase; base++) {
            Mint z = root.pow(1 << (max_base - 1 - base));
            for (int i = 1 << (base - 1); i < (1 << base); i++) {
                roots[i << 1] = roots[i];
                roots[i << 1 | 1] = roots[i] * z;
            }
        }
    }
    void ntt(vector<Mint>& a) {
        const int n = a.size();
        int zeros = __builtin_ctz(n);
        ensure_base(zeros);
        int shift = base - zeros;
        for (int i = 0; i < n; i++) {
            if (i < (rev[i] >> shift)) {
                swap(a[i], a[rev[i] >> shift]);
            }
        }
        for (int k = 1; k < n; k <<= 1) {
            for (int i = 0; i < n; i += (k << 1)) {
                for (int j = 0; j < k; j++) {
                    Mint z = a[i + j + k] * roots[j + k];
                    a[i + j + k] = a[i + j] - z;
                    a[i + j] = a[i + j] + z;
                }
            }
        }
    }
    vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
        int need = a.size() + b.size() - 1;
        int nbase = 1;
        while ((1 << nbase) < need) nbase++;
        ensure_base(nbase);
        int sz = 1 << nbase;
        a.resize(sz, Mint(0));
        b.resize(sz, Mint(0));
        ntt(a);
        ntt(b);
        Mint inv_sz = 1 / Mint(sz);
        for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
        reverse(a.begin() + 1, a.end());
        ntt(a);
        a.resize(need);
        return a;
    }
    vector<int> multiply(vector<int> a, vector<int> b) {
        vector<Mint> A(a.size()), B(b.size());
        for (int i = 0; i < a.size(); i++) A[i] = Mint(a[i]);
        for (int i = 0; i < b.size(); i++) B[i] = Mint(b[i]);
        vector<Mint> C = multiply(A, B);
        vector<int> res(C.size());
        for (int i = 0; i < C.size(); i++) res[i] = C[i].v;
        return res;
    }
};

/**
 * @brief Formal Power Series
 * @docs docs/polynomial/FormalPowerSeries.md
 */
template <typename M> struct FormalPowerSeries : vector<M> {
    using vector<M>::vector;
    using Poly = FormalPowerSeries;
    using MUL = function<Poly(Poly, Poly)>;
    static MUL& get_mul() {
        static MUL mul = nullptr;
        return mul;
    }
    static void set_mul(MUL f) { get_mul() = f; }
    void shrink() {
        while (this->size() && this->back() == M(0)) this->pop_back();
    }
    Poly pre(int deg) const { return Poly(this->begin(), this->begin() + min((int)this->size(), deg)); }
    Poly operator+(const M& v) const { return Poly(*this) += v; }
    Poly operator+(const Poly& p) const { return Poly(*this) += p; }
    Poly operator-(const M& v) const { return Poly(*this) -= v; }
    Poly operator-(const Poly& p) const { return Poly(*this) -= p; }
    Poly operator*(const M& v) const { return Poly(*this) *= v; }
    Poly operator*(const Poly& p) const { return Poly(*this) *= p; }
    Poly operator/(const Poly& p) const { return Poly(*this) /= p; }
    Poly operator%(const Poly& p) const { return Poly(*this) %= p; }
    Poly& operator+=(const M& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        return *this;
    }
    Poly& operator+=(const Poly& p) {
        if (p.size() > this->size()) this->resize(p.size());
        for (int i = 0; i < (int)p.size(); i++) (*this)[i] += p[i];
        return *this;
    }
    Poly& operator-=(const M& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        return *this;
    }
    Poly& operator-=(const Poly& p) {
        if (p.size() > this->size()) this->resize(p.size());
        for (int i = 0; i < (int)p.size(); i++) (*this)[i] -= p[i];
        return *this;
    }
    Poly& operator*=(const M& v) {
        for (int i = 0; i < (int)this->size(); i++) (*this)[i] *= v;
        return *this;
    }
    Poly& operator*=(const Poly& p) {
        if (this->empty() || p.empty()) {
            this->clear();
            return *this;
        }
        assert(get_mul() != nullptr);
        return *this = get_mul()(*this, p);
    }
    Poly& operator/=(const Poly& p) {
        if (this->size() < p.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - p.size() - 1;
        debug(n);
        Poly a = rev().pre(n);
        debug(p.size());
        return *this = (rev().pre(n) * p.rev().inv(n)).pre(n).rev(n);
    }
    Poly& operator%=(const Poly& p) { return *this -= *this / p * p; }
    Poly operator<<(const int deg) {
        Poly res(*this);
        res.insert(res.begin(), deg, M(0));
        return res;
    }
    Poly operator>>(const int deg) {
        if (this->size() <= deg) return {};
        Poly res(*this);
        res.erase(res.begin(), res.begin() + deg);
        return res;
    }
    Poly operator-() const {
        Poly res(this->size());
        for (int i = 0; i < (int)this->size(); i++) res[i] = -(*this)[i];
        return res;
    }
    Poly rev(int deg = -1) const {
        Poly res(*this);
        if (~deg) res.resize(deg, M(0));
        reverse(res.begin(), res.end());
        return res;
    }
    Poly diff() const {
        Poly res(max(0, (int)this->size() - 1));
        for (int i = 1; i < (int)this->size(); i++) res[i - 1] = (*this)[i] * M(i);
        return res;
    }
    Poly integral() const {
        Poly res(this->size() + 1);
        res[0] = M(0);
        for (int i = 0; i < (int)this->size(); i++) res[i + 1] = (*this)[i] / M(i + 1);
        return res;
    }
    Poly inv(int deg = -1) const {
        assert((*this)[0] != M(0));
        if (deg < 0) deg = this->size();
        Poly res({M(1) / (*this)[0]});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + res - res * res * pre(i << 1)).pre(i << 1);
        }
        return res.pre(deg);
    }
    Poly log(int deg = -1) const {
        assert((*this)[0] == M(1));
        if (deg < 0) deg = this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }
    Poly sqrt(int deg = -1) const {
        assert((*this)[0] == M(1));
        if (deg == -1) deg = this->size();
        Poly res({M(1)});
        M inv2 = M(1) / M(2);
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + pre(i << 1) * res.inv(i << 1)) * inv2;
        }
        return res.pre(deg);
    }
    Poly exp(int deg = -1) {
        assert((*this)[0] == M(0));
        if (deg < 0) deg = this->size();
        Poly res({M(1)});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res * (pre(i << 1) + M(1) - res.log(i << 1))).pre(i << 1);
        }
        return res.pre(deg);
    }
    Poly pow(long long k, int deg = -1) const {
        if (deg < 0) deg = this->size();
        for (int i = 0; i < (int)this->size(); i++) {
            if ((*this)[i] == M(0)) continue;
            if (k * i > deg) return Poly(deg, M(0));
            M inv = M(1) / (*this)[i];
            Poly res = (((*this * inv) >> i).log() * k).exp() * (*this)[i].pow(k);
            res = (res << (i * k)).pre(deg);
            if ((int)res.size() < deg) res.resize(deg, M(0));
            return res;
        }
        return *this;
    }
    Poly pow_mod(long long k, const Poly& mod) const {
        Poly x(*this), res = {M(1)};
        while (k > 0) {
            if (k & 1) res = res * x % mod;
            x = x * x % mod;
            k >>= 1;
        }
        return res;
    }
    Poly linear_mul(const M& a, const M& b) {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size() + 1; i++) {
            res[i] = (i - 1 >= 0 ? (*this)[i - 1] * a : M(0)) + (i < (int)this->size() ? (*this)[i] * b : M(0));
        }
        return res;
    }
    Poly linear_div(const M& a, const M& b) {
        Poly res(this->size() - 1);
        M inv_b = M(1) / b;
        for (int i = 0; i + 1 < (int)this->size(); i++) {
            res[i] = ((*this)[i] - (i - 1 >= 0 ? res[i - 1] * a : M(0))) * inv_b;
        }
        return res;
    }
    Poly sparse_mul(const M& c, const M& d) {
        Poly res(*this);
        res.resize(this->size() + d, M(0));
        for (int i = 0; i < (int)this->size(); i++) {
            res[i + d] += (*this)[i] * c;
        }
        return res;
    }
    Poly sparse_div(const M& c, const M& d) {
        Poly res(*this);
        for (int i = 0; i < res.size() - d; i++) {
            res[i + d] -= res[i] * c;
        }
        return res;
    }
    M operator()(const M& x) const {
        M res = 0, power = 1;
        for (int i = 0; i < (int)this->size(); i++, power *= x) {
            res += (*this)[i] * power;
        }
        return res;
    }
};

/**
 * @brief compress
 */
template <typename T> map<T, int> compress(vector<T>& v) {
    sort(v.begin(), v.end());
    v.erase(unique(v.begin(), v.end()), v.end());
    map<T, int> res;
    for (int i = 0; i < v.size(); i++) res[v[i]] = i;
    return res;
}

/**
 * @brief Segment Tree
 * @docs docs/datastructure/SegmentTree.md
 */
template <typename Monoid> struct SegmentTree {
    typedef function<Monoid(Monoid, Monoid)> F;
    int n;
    F f;
    Monoid id;
    vector<Monoid> dat;
    SegmentTree(int n_, F f, Monoid id) : f(f), id(id) { init(n_); }
    void init(int n_) {
        n = 1;
        while (n < n_) n <<= 1;
        dat.assign(n << 1, id);
    }
    void build(const vector<Monoid>& v) {
        for (int i = 0; i < (int)v.size(); i++) dat[i + n] = v[i];
        for (int i = n - 1; i; i--) dat[i] = f(dat[i << 1 | 0], dat[i << 1 | 1]);
    }
    void update(int k, Monoid x) {
        dat[k += n] = x;
        while (k >>= 1) dat[k] = f(dat[k << 1 | 0], dat[k << 1 | 1]);
    }
    Monoid query(int a, int b) {
        if (a >= b) return id;
        Monoid vl = id, vr = id;
        for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
            if (l & 1) vl = f(vl, dat[l++]);
            if (r & 1) vr = f(dat[--r], vr);
        }
        return f(vl, vr);
    }
    template <typename C> int find_subtree(int k, const C& check, Monoid& M, bool type) {
        while (k < n) {
            Monoid nxt = type ? f(dat[k << 1 | type], M) : f(M, dat[k << 1 | type]);
            if (check(nxt))
                k = k << 1 | type;
            else
                M = nxt, k = k << 1 | (type ^ 1);
        }
        return k - n;
    }
    // min i s.t. f(seg[a],seg[a+1],...,seg[i]) satisfy "check"
    template <typename C> int find_first(int a, const C& check) {
        Monoid L = id;
        if (a <= 0) {
            if (check(f(L, dat[1]))) return find_subtree(1, check, L, false);
            return -1;
        }
        int b = n;
        for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
            if (l & 1) {
                Monoid nxt = f(L, dat[l]);
                if (check(nxt)) return find_subtree(l, check, L, false);
                L = nxt;
                l++;
            }
        }
        return -1;
    }
    // max i s.t. f(seg[i],...,seg[b-2],seg[b-1]) satisfy "check"
    template <typename C> int find_last(int b, const C& check) {
        Monoid R = id;
        if (b >= n) {
            if (check(f(dat[1], R))) return find_subtree(1, check, R, true);
            return -1;
        }
        int a = n;
        for (int l = a, r = b + n; l < r; l >>= 1, r >>= 1) {
            if (r & 1) {
                Monoid nxt = f(dat[--r], R);
                if (check(nxt)) return find_subtree(r, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }
    Monoid operator[](int i) { return dat[i + n]; }
};

const int INF = 1e9;
const long long IINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const char dir[4] = {'D', 'R', 'U', 'L'};
// const long long MOD = 1000000007;
const long long MOD = 998244353;

using mint = modint<MOD>;
using FPS = FormalPowerSeries<mint>;
const int MAX_N = 3010;

int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    NumberTheoreticTransform<MOD> NTT;
    auto mul = [&](const FPS::Poly& a, const FPS::Poly& b) {
        auto res = NTT.multiply(a, b);
        return FPS::Poly(res.begin(), res.begin() + min((int)res.size(), MAX_N));
    };
    FPS::set_mul(mul);

    ll N;
    int Q;
    cin >> N >> Q;
    vector<ll> K(Q);
    vector<int> A(Q), B(Q), S(Q), T(Q);
    for (int i = 0; i < Q; i++) cin >> K[i] >> A[i] >> B[i] >> S[i] >> T[i], --K[i];

    vector<ll> comp = K;
    map<ll, int> mp = compress(comp);
    for (ll& x : K) x = mp[x];
    int sz = mp.size();

    vector<vector<mint>> comb(sz + 1, vector<mint>(MAX_N));  // 和 j を N - i 要素に分割
    for (int i = 0; i <= sz; i++) {
        ll cur = N - i - 1;
        if (i == N) {
            comb[i][0] = 1;
            continue;
        }
        comb[i][0] = 1;
        for (int j = 1; j < MAX_N; j++) comb[i][j] = comb[i][j - 1] * (++cur) / j;
    }
    vector<FPS> a(sz, FPS(MAX_N, 1));
    FPS id(1, 1);
    auto f = [](FPS a, FPS b) -> FPS {
        auto c = a * b;
        return c;
    };
    SegmentTree<FPS> seg(sz, f, id);
    seg.build(a);
    FPS other(MAX_N, 0);
    for (int i = 0; i < MAX_N; i++) other[i] = comb[sz][i];
    // for (int j = 0; j < 10; j++) cerr << other[j] << (j + 1 == 10 ? '\n' : ' ');

    for (int i = 0; i < Q; i++) {
        for (int j = A[i]; j <= B[i]; j++) a[K[i]][j] = 0;
        seg.update(K[i], a[K[i]]);
        auto res = seg.query(0, sz);
        // for (int j = 0; j < 10; j++) cerr << res[j] << (j + 1 == 10 ? '\n' : ' ');
        res *= other;
        // for (int j = 0; j < 10; j++) cerr << res[j] << (j + 1 == 10 ? '\n' : ' ');
        mint ans = 0;
        for (int j = S[i]; j <= min((int)res.size() - 1, T[i]); j++) ans += res[j];
        cout << ans << '\n';
    }
    return 0;
}
0