結果
問題 | No.1549 [Cherry 2nd Tune] BANning Tuple |
ユーザー | leaf_1415 |
提出日時 | 2021-06-11 23:58:01 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,907 bytes |
コンパイル時間 | 1,206 ms |
コンパイル使用メモリ | 98,620 KB |
実行使用メモリ | 28,848 KB |
最終ジャッジ日時 | 2024-12-15 03:59:37 |
合計ジャッジ時間 | 86,884 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 26 ms
18,508 KB |
testcase_01 | WA | - |
testcase_02 | AC | 3,544 ms
19,060 KB |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | AC | 1,002 ms
27,892 KB |
ソースコード
#include <iostream> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #define rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++) #define per(x, s, t) for(llint (x) = (s); (x) >= (t); (x)--) #define reps(x, s) for(llint (x) = 0; (x) < (llint)(s).size(); (x)++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define ceil(x, y) (((x)+(y)-1) / (y)) #define all(x) (x).begin(),(x).end() #define outl(...) dump_func(__VA_ARGS__) #define inf 1e18 using namespace std; typedef long long llint; typedef long long ll; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const ll dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; //const ll mod = 1000000007; const ll mod = 998244353; struct mint{ ll x = 0; mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){ x += ope.x; if(x >= mod) x -= mod; return *this; } mint& operator-=(const mint &ope){ x += mod - ope.x; if(x >= mod) x -= mod; return *this; } mint& operator*=(const mint &ope){ x *= ope.x, x %= mod; return *this; } mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){ if(n & 1) *this *= mul; mul *= mul; n >>= 1; } return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ ll t; is >> t, ope.x = t; return is; } ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} bool exceed(ll x, ll y, ll m){return x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "YES" << endl; } void no(){ cout << "NO" << endl; } ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;} ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());} template<typename T> ostream& operator << (ostream& os, vector<T>& vec) { for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template<typename T> ostream& operator << (ostream& os, deque<T>& deq) { for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " "); return os; } template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& map_var) { for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if(itr != map_var.end()) os << ","; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, set<T>& set_var) { for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, multiset<T>& set_var) { for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> void outa(T a[], ll s, ll t){ for(ll i = s; i <= t; i++){ cout << a[i]; if(i < t) cout << " ";} cout << endl; } void dump_func() {cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...); } llint modpow(llint a, llint n, llint mod) { if(n == 0) return 1; if(n % 2){ return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod; } else{ return modpow((a*a)%mod, n/2, mod) % mod; } } int rev(int x, int n) { int ret = 0; for(int i = 0; i < n; i++){ ret <<= 1; ret |= (x>>i) & 1; } return ret; } //f[]とF[]は異なる実体を持たなければならない。rootには1の原始2^n乗根を渡す void DFT(llint f[], llint F[], int n, llint mod, llint root) { int N = 1<<n; for(int i = 0; i < N; i++) F[rev(i, n)] = f[i]; llint a, b, x, z; for(int i = 1; i <= n; i++){ int l = 1<<i; z = modpow(root, 1<<(n-i), mod); for(int j = 0; j < N/l; j++){ x = 1; for(int k = 0; k < l/2; k++){ a = F[j*l+k], b = F[j*l+k+l/2]; F[j*l+k] = a + x * b % mod; F[j*l+k+l/2] = a - x * b % mod + mod; if(F[j*l+k] >= mod) F[j*l+k] -= mod; if(F[j*l+k+l/2] >= mod) F[j*l+k+l/2] -= mod; x *= z, x %= mod; } } } } //f[]とF[]は異なる実体を持たなければならない。rootには1の原始2^n乗根を渡す void IDFT(llint F[], llint f[], int n, llint mod, llint root) { int N = 1<<n; for(int i = 0; i < N; i++) f[rev(i, n)] = F[i]; root = modpow(root, mod-2, mod); llint a, b, x, z; for(int i = 1; i <= n; i++){ int l = 1<<i; z = modpow(root, 1<<(n-i), mod); for(int j = 0; j < N/l; j++){ x = 1; for(int k = 0; k < l/2; k++){ a = f[j*l+k], b = f[j*l+k+l/2]; f[j*l+k] = a + x * b % mod; f[j*l+k+l/2] = a - x * b % mod + mod; if(f[j*l+k] >= mod) f[j*l+k] -= mod; if(f[j*l+k+l/2] >= mod) f[j*l+k+l/2] -= mod; x *= z, x %= mod; } } } llint Ninv = modpow(N, mod-2, mod); for(int i = 0; i < N; i++) f[i] *= Ninv, f[i] %= mod; } ll n, Q, nid; ll f[105][1<<13], F[105][1<<13]; ll g[1<<13], G[1<<13]; vector<P> vec[105]; map<ll, ll> mp; ll used[3005]; ll calc(ll t) { ll ret = g[t], cb = 1; rep(i, 1, t){ cb *= (n-nid+i)%mod, cb %= mod; cb *= modpow(i, mod-2, mod), cb %= mod; ret += g[t-i] * cb % mod; ret %= mod; } return ret; } int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> Q; ll root = modpow(modpow(3, 119, mod), (1<<10), mod); ll N = 1<<13; nid = 0; ll k, a, b, s, t; rep(q, 1, Q){ cin >> k >> a >> b >> s >> t; if(mp.count(k) == 0) mp[k] = ++nid; ll id = mp[k]; vec[id].push_back(P(a, b)); rep(i, 0, 3000) used[i] = 0; for(auto p : vec[id]){ used[p.first]++, used[p.second+1]--; } rep(i, 1, 3000) used[i] += used[i-1]; rep(i, 0, N-1) f[id][i] = 0; rep(i, 0, 3000) if(used[i] == 0) f[id][i] = 1; DFT(f[id], F[id], 13, mod, root); rep(i, 0, N-1) G[i] = 1, g[i] = 0; rep(i, 1, nid){ rep(j, 0, N-1) G[j] *= F[i][j], G[j] %= mod; IDFT(G, g, 13, mod, root); rep(j, 3001, N-1) g[j] = 0; DFT(g, G, 13, mod, root); } ll ans = (calc(t) - calc(s-1) + mod) % mod; outl(ans); } return 0; }