結果

問題 No.1002 Twotone
ユーザー PachicobuePachicobue
提出日時 2021-06-14 23:22:01
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,621 ms / 5,000 ms
コード長 20,583 bytes
コンパイル時間 3,476 ms
コンパイル使用メモリ 239,096 KB
実行使用メモリ 68,884 KB
最終ジャッジ日時 2024-06-07 05:01:14
合計ジャッジ時間 20,439 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 380 ms
26,512 KB
testcase_04 AC 502 ms
33,468 KB
testcase_05 AC 499 ms
33,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 248 ms
21,624 KB
testcase_08 AC 441 ms
33,384 KB
testcase_09 AC 447 ms
33,420 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 509 ms
26,628 KB
testcase_12 AC 727 ms
33,272 KB
testcase_13 AC 727 ms
33,400 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 342 ms
20,352 KB
testcase_16 AC 712 ms
32,988 KB
testcase_17 AC 694 ms
33,016 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 619 ms
33,348 KB
testcase_20 AC 817 ms
43,508 KB
testcase_21 AC 799 ms
42,808 KB
testcase_22 AC 3 ms
5,376 KB
testcase_23 AC 616 ms
31,768 KB
testcase_24 AC 1,057 ms
50,464 KB
testcase_25 AC 1,045 ms
50,580 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 106 ms
22,004 KB
testcase_28 AC 189 ms
31,692 KB
testcase_29 AC 163 ms
31,560 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 155 ms
31,352 KB
testcase_32 AC 192 ms
31,484 KB
testcase_33 AC 159 ms
31,476 KB
testcase_34 AC 1,621 ms
68,884 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using f64 = double;
using f80 = long double;
using f128 = __float128;
constexpr i32 operator"" _i32(u64 v)
{
    return v;
}
constexpr i32 operator"" _u32(u64 v)
{
    return v;
}
constexpr i64 operator"" _i64(u64 v)
{
    return v;
}
constexpr u64 operator"" _u64(u64 v)
{
    return v;
}
constexpr f64 operator"" _f64(f80 v)
{
    return v;
}
constexpr f80 operator"" _f80(f80 v)
{
    return v;
}
using Istream = std::istream;
using Ostream = std::ostream;
using Str = std::string;
template<typename T>
using Lt = std::less<T>;
template<typename T>
using Gt = std::greater<T>;
template<typename T>
using IList = std::initializer_list<T>;
template<int n>
using BSet = std::bitset<n>;
template<typename T1, typename T2>
using Pair = std::pair<T1, T2>;
template<typename... Ts>
using Tup = std::tuple<Ts...>;
template<typename T, int N>
using Arr = std::array<T, N>;
template<typename... Ts>
using Deq = std::deque<Ts...>;
template<typename... Ts>
using Set = std::set<Ts...>;
template<typename... Ts>
using MSet = std::multiset<Ts...>;
template<typename... Ts>
using USet = std::unordered_set<Ts...>;
template<typename... Ts>
using UMSet = std::unordered_multiset<Ts...>;
template<typename... Ts>
using Map = std::map<Ts...>;
template<typename... Ts>
using MMap = std::multimap<Ts...>;
template<typename... Ts>
using UMap = std::unordered_map<Ts...>;
template<typename... Ts>
using UMMap = std::unordered_multimap<Ts...>;
template<typename... Ts>
using Vec = std::vector<Ts...>;
template<typename... Ts>
using Stack = std::stack<Ts...>;
template<typename... Ts>
using Queue = std::queue<Ts...>;
template<typename T>
using MaxHeap = std::priority_queue<T>;
template<typename T>
using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>;
using NSec = std::chrono::nanoseconds;
using USec = std::chrono::microseconds;
using MSec = std::chrono::milliseconds;
using Sec = std::chrono::seconds;
template<typename T>
constexpr T LIMMIN = std::numeric_limits<T>::min();
template<typename T>
constexpr T LIMMAX = std::numeric_limits<T>::max();
template<typename T>
constexpr T INF = (LIMMAX<T> - 1) / 2;
template<typename T>
constexpr T PI = T{3.141592653589793238462643383279502884};
template<typename T = u64>
constexpr T TEN(const int n)
{
    return n == 0 ? T{1} : TEN<T>(n - 1) * T{10};
}
Ostream& operator<<(Ostream& os, i128 v)
{
    bool minus = false;
    if (v < 0) { minus = true, v = -v; }
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) {
        ans.push_back('0' + v % 10), v /= 10;
    }
    std::reverse(ans.begin(), ans.end());
    return os << (minus ? "-" : "") << ans;
}
Ostream& operator<<(Ostream& os, u128 v)
{
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) {
        ans.push_back('0' + v % 10), v /= 10;
    }
    std::reverse(ans.begin(), ans.end());
    return os << ans;
}
template<typename T>
bool chmin(T& a, const T& b)
{
    if (a > b) {
        a = b;
        return true;
    } else {
        return false;
    }
}
template<typename T>
bool chmax(T& a, const T& b)
{
    if (a < b) {
        a = b;
        return true;
    } else {
        return false;
    }
}
template<typename T>
constexpr T fdiv(T x, T y)
{
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? x / y : (x - y + 1) / y;
}
template<typename T>
constexpr T cdiv(T x, T y)
{
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? (x + y - 1) / y : x / y;
}
template<typename T, typename I>
constexpr T modPower(T v, I n, T mod)
{
    T ans = 1 % mod;
    for (; n > 0; n >>= 1, (v *= v) %= mod) {
        if (n % 2 == 1) { (ans *= v) %= mod; }
    }
    return ans;
}
template<typename T, typename I>
constexpr T power(T v, I n)
{
    T ans = 1;
    for (; n > 0; n >>= 1, v *= v) {
        if (n % 2 == 1) { ans *= v; }
    }
    return ans;
}
template<typename T, typename I>
constexpr T power(T v, I n, const T& e)
{
    T ans = e;
    for (; n > 0; n >>= 1, v *= v) {
        if (n % 2 == 1) { ans *= v; }
    }
    return ans;
}
template<typename T>
Vec<T> operator+=(Vec<T>& vs1, const Vec<T>& vs2)
{
    vs1.insert(vs1.end(), vs2.begin(), vs2.end());
    return vs1;
}
template<typename T>
Vec<T> operator+(const Vec<T>& vs1, const Vec<T>& vs2)
{
    auto vs = vs1;
    vs += vs2;
    return vs;
}
template<typename T>
void fillAll(Vec<T>& vs, const T& v)
{
    std::fill(vs.begin(), vs.end(), v);
}
template<typename T, typename C = Lt<T>>
void sortAll(Vec<T>& vs, C comp = C{})
{
    std::sort(vs.begin(), vs.end(), comp);
}
template<typename T>
void reverseAll(Vec<T>& vs)
{
    std::reverse(vs.begin(), vs.end());
}
template<typename T>
void uniqueAll(Vec<T>& vs)
{
    sortAll(vs);
    vs.erase(std::unique(vs.begin(), vs.end()), vs.end());
}
template<typename T, typename V = T>
V sumAll(const Vec<T>& vs)
{
    return std::accumulate(vs.begin(), vs.end(), V{});
}
template<typename T>
int minInd(const Vec<T>& vs)
{
    return std::min_element(vs.begin(), vs.end()) - vs.begin();
}
template<typename T>
int maxInd(const Vec<T>& vs)
{
    return std::max_element(vs.begin(), vs.end()) - vs.begin();
}
template<typename T>
int lbInd(const Vec<T>& vs, const T& v)
{
    return std::lower_bound(vs.begin(), vs.end(), v) - vs.begin();
}
template<typename T>
int ubInd(const Vec<T>& vs, const T& v)
{
    return std::upper_bound(vs.begin(), vs.end(), v) - vs.begin();
}
template<typename T, typename F>
Vec<T> genVec(int n, F gen)
{
    Vec<T> ans;
    std::generate_n(std::back_insert_iterator(ans), n, gen);
    return ans;
}
Vec<int> iotaVec(int n, int offset = 0)
{
    Vec<int> ans(n);
    std::iota(ans.begin(), ans.end(), offset);
    return ans;
}
template<typename T>
Vec<T> revVec(const Vec<T>& vs)
{
    auto ans = vs;
    reverseAll(ans);
    return ans;
}
constexpr int popcount(const u64 v)
{
    return v ? __builtin_popcountll(v) : 0;
}
constexpr int log2p1(const u64 v)
{
    return v ? 64 - __builtin_clzll(v) : 0;
}
constexpr int lsbp1(const u64 v)
{
    return __builtin_ffsll(v);
}
constexpr int clog(const u64 v)
{
    return v ? log2p1(v - 1) : 0;
}
constexpr u64 ceil2(const u64 v)
{
    const int l = clog(v);
    return (l == 64) ? 0_u64 : (1_u64 << l);
}
constexpr u64 floor2(const u64 v)
{
    return v ? (1_u64 << (log2p1(v) - 1)) : 0_u64;
}
constexpr bool ispow2(const u64 v)
{
    return (v > 0) and ((v & (v - 1)) == 0);
}
constexpr bool btest(const u64 mask, const int ind)
{
    return (mask >> ind) & 1_u64;
}
template<typename F>
struct Fix : F
{
    Fix(F&& f) : F{std::forward<F>(f)} {}
    template<typename... Args>
    auto operator()(Args&&... args) const
    {
        return F::operator()(*this, std::forward<Args>(args)...);
    }
};
class irange
{
private:
    struct itr
    {
        itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {}
        bool operator!=(const itr& it) const
        {
            return m_cnt != it.m_cnt;
        }
        int operator*()
        {
            return m_cnt;
        }
        itr& operator++()
        {
            m_cnt += m_step;
            return *this;
        }
        i64 m_cnt, m_step;
    };
    i64 m_start, m_end, m_step;
public:
    irange(i64 start, i64 end, i64 step = 1)
    {
        assert(step != 0);
        const i64 d = std::abs(step);
        const i64 l = (step > 0 ? start : end);
        const i64 r = (step > 0 ? end : start);
        int n = (r - l) / d + ((r - l) % d ? 1 : 0);
        if (l >= r) { n = 0; }
        m_start = start;
        m_end = start + step * n;
        m_step = step;
    }
    itr begin() const
    {
        return itr{m_start, m_step};
    }
    itr end() const
    {
        return itr{m_end, m_step};
    }
};
irange rep(int end)
{
    return irange(0, end, 1);
}
irange per(int rend)
{
    return irange(rend - 1, -1, -1);
}
#pragma COMMENT("[REFS] Xoshiro: https://prng.di.unimi.it")
namespace xoshiro_impl {
u64 x;
u64 next()
{
    uint64_t z = (x += 0x9e3779b97f4a7c15);
    z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
    z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
    return z ^ (z >> 31);
}
}
class Xoshiro32
{
public:
    using result_type = u32;
    using T = result_type;
    Xoshiro32(T seed = 0)
    {
        xoshiro_impl::x = seed;
        s[0] = xoshiro_impl::next();
        s[1] = xoshiro_impl::next();
        s[2] = xoshiro_impl::next();
        s[3] = xoshiro_impl::next();
    }
    static constexpr T min()
    {
        return LIMMIN<T>;
    }
    static constexpr T max()
    {
        return LIMMAX<T>;
    }
    T operator()()
    {
        return next();
    }
private:
    static constexpr T rotl(const T x, int k)
    {
        return (x << k) | (x >> (32 - k));
    }
    T next()
    {
        const T ans = rotl(s[1] * 5, 7) * 9;
        const T t = s[1] << 9;
        s[2] ^= s[0];
        s[3] ^= s[1];
        s[1] ^= s[2];
        s[0] ^= s[3];
        s[2] ^= t;
        s[3] = rotl(s[3], 11);
        return ans;
    }
    T s[4];
};
class Xoshiro64
{
public:
    using result_type = u64;
    using T = result_type;
    Xoshiro64(T seed = 0)
    {
        xoshiro_impl::x = seed;
        s[0] = xoshiro_impl::next();
        s[1] = xoshiro_impl::next();
        s[2] = xoshiro_impl::next();
        s[3] = xoshiro_impl::next();
    }
    static constexpr T min()
    {
        return LIMMIN<T>;
    }
    static constexpr T max()
    {
        return LIMMAX<T>;
    }
    T operator()()
    {
        return next();
    }
private:
    static constexpr T rotl(const T x, int k)
    {
        return (x << k) | (x >> (64 - k));
    }
    T next()
    {
        const T ans = rotl(s[1] * 5, 7) * 9;
        const T t = s[1] << 17;
        s[2] ^= s[0];
        s[3] ^= s[1];
        s[1] ^= s[2];
        s[0] ^= s[3];
        s[2] ^= t;
        s[3] = rotl(s[3], 45);
        return ans;
    }
    T s[4];
};
template<typename Rng>
class RNG
{
public:
    using result_type = typename Rng::result_type;
    using T = result_type;
    static constexpr T min()
    {
        return Rng::min();
    }
    static constexpr T max()
    {
        return Rng::max();
    }
    RNG() : RNG(std::random_device{}()) {}
    RNG(T seed) : m_rng(seed) {}
    T operator()()
    {
        return m_rng();
    }
    template<typename T>
    T val(T min, T max)
    {
        return std::uniform_int_distribution<T>(min, max)(m_rng);
    }
    template<typename T>
    Pair<T, T> pair(T min, T max)
    {
        return std::minmax({val<T>(min, max), val<T>(min, max)});
    }
    template<typename T>
    Vec<T> vec(int n, T min, T max)
    {
        return genVec<T>(n, [&]() { return val<T>(min, max); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m, T min, T max)
    {
        return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); });
    }
private:
    Rng m_rng;
};
RNG<std::mt19937> rng;
RNG<std::mt19937_64> rng64;
RNG<Xoshiro32> rng_xo;
RNG<Xoshiro64> rng_xo64;
template<typename T = int>
class Graph
{
    struct Edge
    {
        Edge() = default;
        Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {}
        int id;
        int to;
        T cost;
        operator int() const
        {
            return to;
        }
    };
public:
    Graph(int n) : m_v{n}, m_edges(n) {}
    void addEdge(int u, int v, bool bi = false)
    {
        assert(0 <= u and u < m_v);
        assert(0 <= v and v < m_v);
        m_edges[u].emplace_back(m_e, v, 1);
        if (bi) { m_edges[v].emplace_back(m_e, u, 1); }
        m_e++;
    }
    void addEdge(int u, int v, const T& c, bool bi = false)
    {
        assert(0 <= u and u < m_v);
        assert(0 <= v and v < m_v);
        m_edges[u].emplace_back(m_e, v, c);
        if (bi) { m_edges[v].emplace_back(m_e, u, c); }
        m_e++;
    }
    const Vec<Edge>& operator[](const int u) const
    {
        assert(0 <= u and u < m_v);
        return m_edges[u];
    }
    Vec<Edge>& operator[](const int u)
    {
        assert(0 <= u and u < m_v);
        return m_edges[u];
    }
    int v() const
    {
        return m_v;
    }
    int e() const
    {
        return m_e;
    }
    friend Ostream& operator<<(Ostream& os, const Graph& g)
    {
        for (int u : rep(g.v())) {
            for (const auto& [id, v, c] : g[u]) {
                os << "[" << id << "]: ";
                os << u << "->" << v << "(" << c << ")\n";
            }
        }
        return os;
    }
    Vec<T> sizes(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<T> ss(N, 1);
        Fix([&](auto dfs, int u, int p) -> void {
            for (const auto& [id, v, c] : m_edges[u]) {
                static_cast<void>(id);
                if (v == p) { continue; }
                dfs(v, u);
                ss[u] += ss[v];
            }
        })(root, -1);
        return ss;
    }
    Vec<T> depths(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<T> ds(N, 0);
        Fix([&](auto dfs, int u, int p) -> void {
            for (const auto& [id, v, c] : m_edges[u]) {
                static_cast<void>(id);
                if (v == p) { continue; }
                ds[v] = ds[u] + c;
                dfs(v, u);
            }
        })(root, -1);
        return ds;
    }
    Vec<int> parents(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<int> ps(N, -1);
        Fix([&](auto dfs, int u, int p) -> void {
            for (const auto& [id, v, c] : m_edges[u]) {
                static_cast<void>(id);
                if (v == p) { continue; }
                ps[v] = u;
                dfs(v, u);
            }
        })(root, -1);
        return ps;
    }
private:
    int m_v;
    int m_e = 0;
    Vec<Vec<Edge>> m_edges;
};
template<typename T>
class CentroidDecomp
{
public:
    CentroidDecomp(const Graph<T>& g) : m_cs(g.v())
    {
        const int N = g.v();
        Vec<int> szs(N, 1);
        Vec<bool> used(N, false);
        auto sizeDfs = Fix([&](auto dfs, int u, int p) -> int {
            szs[u] = 1;
            for (int v : g[u]) {
                if (v == p or used[v]) { continue; }
                szs[u] += dfs(v, u);
            }
            return szs[u];
        });
        auto getCentor = Fix([&](auto dfs, int u, int p, int tot) -> int {
            for (int v : g[u]) {
                if (v == p or used[v]) { continue; }
                if (szs[v] * 2 > tot) { return dfs(v, u, tot); }
            }
            if (tot == N) { m_center = u; }
            return u;
        });
        Fix([&](auto dfs, int u, int pc) -> void {
            const int tot = sizeDfs(u, -1);
            const int c = getCentor(u, -1, tot);
            used[c] = true;
            if (pc != -1) { m_cs.addEdge(pc, c); }
            for (int v : g[c]) {
                if (not used[v]) { dfs(v, c); }
            }
        })(0, -1);
    }
    int center() const
    {
        return m_center;
    }
    const Graph<>& centers() const
    {
        return m_cs;
    }
private:
    int m_center;
    Graph<> m_cs;
};
class Printer
{
public:
    Printer(Ostream& os = std::cout) : m_os{os}
    {
        m_os << std::fixed << std::setprecision(15);
    }
    template<typename... Args>
    int operator()(const Args&... args)
    {
        dump(args...);
        return 0;
    }
    template<typename... Args>
    int ln(const Args&... args)
    {
        dump(args...), m_os << '\n';
        return 0;
    }
    template<typename... Args>
    int el(const Args&... args)
    {
        dump(args...), m_os << std::endl;
        return 0;
    }
private:
    template<typename T>
    void dump(const T& v)
    {
        m_os << v;
    }
    template<typename T>
    void dump(const Vec<T>& vs)
    {
        for (const int i : rep(vs.size())) {
            m_os << (i ? " " : ""), dump(vs[i]);
        }
    }
    template<typename T>
    void dump(const Vec<Vec<T>>& vss)
    {
        for (const int i : rep(vss.size())) {
            m_os << (i ? "" : "\n"), dump(vss[i]);
        }
    }
    template<typename T, typename... Ts>
    int dump(const T& v, const Ts&... args)
    {
        dump(v), m_os << ' ', dump(args...);
        return 0;
    }
    Ostream& m_os;
};
Printer out;
class Scanner
{
public:
    Scanner(Istream& is = std::cin) : m_is{is}
    {
        m_is.tie(nullptr)->sync_with_stdio(false);
    }
    template<typename T>
    T val()
    {
        T v;
        return m_is >> v, v;
    }
    template<typename T>
    T val(T offset)
    {
        return val<T>() - offset;
    }
    template<typename T>
    Vec<T> vec(int n)
    {
        return genVec<T>(n, [&]() { return val<T>(); });
    }
    template<typename T>
    Vec<T> vec(int n, T offset)
    {
        return genVec<T>(n, [&]() { return val<T>(offset); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m, const T offset)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); });
    }
    template<typename... Args>
    auto tup()
    {
        return Tup<Args...>{val<Args>()...};
    }
    template<typename... Args>
    auto tup(const Args&... offsets)
    {
        return Tup<Args...>{val<Args>(offsets)...};
    }
private:
    Istream& m_is;
};
Scanner in;
template<typename T, int n, int i = 0>
auto ndVec(int const (&szs)[n], const T x = T{})
{
    if constexpr (i == n) {
        return x;
    } else {
        return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x));
    }
}
int main()
{
    const auto [N, K] = in.tup<int, int>();
    Graph<int> g(N);
    for (int i : rep(N - 1)) {
        static_cast<void>(i);
        const auto [u, v, c] = in.tup<int, int, int>(1, 1, 1);
        g.addEdge(u, v, c, true);
    }
    CentroidDecomp centros(g);
    const int cr = centros.center();
    const auto cg = centros.centers();
    Vec<bool> used(N, false);
    using P = Pair<int, int>;
    i64 ans = 0;
    auto f = [&](const Map<int, i64>& dp1,
                 const Map<P, i64>& dp2,
                 const Map<int, i64>& dp3,
                 const i64 one) -> i64 {
        i64 ans = 0;
        i64 dbl = 0;
        for (const auto& [k, n] : dp1) {
            ans += n * (dp3.at(k) - n);
            dbl += n * (one - n);
        }
        for (const auto& [ks, n] : dp2) {
            static_cast<void>(ks);
            ans += n * (n - 1) / 2;
        }
        return ans + dbl / 2;
    };
    Fix([&](auto dfs, int c) -> void {
        used[c] = true;
        Map<int, i64> dp1;
        Map<P, i64> dp2;
        Map<int, i64> dp3;
        int one = 0;
        i64 count = 0;
        i64 minus = 0;
        for (const auto& e : g[c]) {
            if (used[e.to]) { continue; }
            Map<int, i64> subdp1;
            Map<P, i64> subdp2;
            Map<int, i64> subdp3;
            i64 sone = 0;
            Fix([&](auto dfs, int u, int p, const P& ks) -> void {
                if (ks.second == INF<int>) {
                    dp1[ks.first]++;
                    dp3[ks.first]++;
                    subdp1[ks.first]++;
                    subdp3[ks.first]++;
                    sone++;
                    one++;
                } else {
                    count++;
                    dp2[ks]++;
                    dp3[ks.first]++;
                    dp3[ks.second]++;
                    subdp2[ks]++;
                    subdp3[ks.first]++;
                    subdp3[ks.second]++;
                }
                for (const auto& e : g[u]) {
                    const int v = e.to;
                    if (v == p or used[v]) { continue; }
                    const int k = e.cost;
                    auto nks = ks;
                    if (ks.first == k or ks.second == k) {
                        ;
                    } else if (ks.second == INF<int>) {
                        nks.second = k;
                    } else {
                        continue;
                    }
                    if (nks.first > nks.second) {
                        std::swap(nks.first, nks.second);
                    }
                    dfs(v, u, nks);
                }
            })(e.to, c, P{e.cost, INF<int>});
            minus += f(subdp1, subdp2, subdp3, sone);
        }
        count += f(dp1, dp2, dp3, one);
        ans += count - minus;
        for (int nc : cg[c]) {
            dfs(nc);
        }
    })(cr);
    out.ln(ans);
    return 0;
}
0